找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復(fù)制鏈接]
查看: 12906|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:27:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Einstein Manifolds
編輯Arthur L. Besse
視頻videohttp://file.papertrans.cn/306/305346/305346.mp4
概述Includes supplementary material:
叢書名稱Classics in Mathematics
圖書封面Titlebook: Einstein Manifolds;  Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top
描述.Einstein‘s equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals..
出版日期Book 1987
關(guān)鍵詞Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
版次1
doihttps://doi.org/10.1007/978-3-540-74311-8
isbn_softcover978-3-540-74120-6
isbn_ebook978-3-540-74311-8Series ISSN 1431-0821 Series E-ISSN 2512-5257
issn_series 1431-0821
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Einstein Manifolds影響因子(影響力)




書目名稱Einstein Manifolds影響因子(影響力)學(xué)科排名




書目名稱Einstein Manifolds網(wǎng)絡(luò)公開度




書目名稱Einstein Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Einstein Manifolds被引頻次




書目名稱Einstein Manifolds被引頻次學(xué)科排名




書目名稱Einstein Manifolds年度引用




書目名稱Einstein Manifolds年度引用學(xué)科排名




書目名稱Einstein Manifolds讀者反饋




書目名稱Einstein Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:53 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:34 | 只看該作者
,W?rme- und K?lteversorgungsanlagen,Riemannian metrics. We do not distinguish between an Einstein metric . and equivalent tensor fields . = ., where φ is a diffeomorphism of ., and . a positive constant. In the sequel, the quotient space of Einstein metrics under this relation is called the . of Einstein structures on ., and . by ..
5#
發(fā)表于 2025-3-22 09:38:15 | 只看該作者
https://doi.org/10.1007/978-3-662-28712-5it one may split 2-forms into . and . forms. This can be applied in particular to the middle cohomology of a compact four-manifold or to the curvature form of any bundle with connection over an oriented four-manifold.
6#
發(fā)表于 2025-3-22 13:16:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:30:10 | 只看該作者
Basic Material,ons of Riemannian (and pseudo-Riemannian) geometry. This is mainly intended to fix the definitions and notations that we will use in the book. As a consequence, many fundamental theorems will be quoted without proofs because these are available in classical textbooks on Riemannian geometry such as [Ch-Eb], [Hel 1], [Ko-No 1 and 2], [Spi].
8#
發(fā)表于 2025-3-22 21:17:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:11:31 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:54 | 只看該作者
The Moduli Space of Einstein Structures,Riemannian metrics. We do not distinguish between an Einstein metric . and equivalent tensor fields . = ., where φ is a diffeomorphism of ., and . a positive constant. In the sequel, the quotient space of Einstein metrics under this relation is called the . of Einstein structures on ., and . by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孙吴县| 镇沅| 突泉县| 依兰县| 香格里拉县| 明光市| 泊头市| 田林县| 昌乐县| 正宁县| 宜宾县| 锦屏县| 察雅县| 林西县| 清河县| 梧州市| 舞阳县| 台南市| 理塘县| 玉环县| 张北县| 年辖:市辖区| 郴州市| 荣成市| 五台县| 冕宁县| 义乌市| 错那县| 车致| 卢氏县| 万年县| 蒲城县| 讷河市| 凌源市| 磐安县| 瑞昌市| 武强县| 慈溪市| 高要市| 永清县| 水富县|