找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Kategorientheorie; Mit ausführlichen Er Martin Brandenburg Textbook 2017Latest edition Springer-Verlag GmbH Deutschland 2

[復制鏈接]
樓主: STH
31#
發(fā)表于 2025-3-26 20:59:04 | 只看該作者
,Kovervollst?ndigung,nden universellen Eigenschaften zu arbeiten. Wir k?nnen uns nun Kategorien ebenfalls als algebraische Strukturen vorstellen (wenn auch nicht im Sinne von Kap. 4, weil die Komposition nur eingeschr?nkt definiert ist) und fragen, ob sich Kategorien durch Erzeuger (Objekte, Morphismen) und Relationen (zwischen den Morphismen) beschreiben lassen.
32#
發(fā)表于 2025-3-27 02:35:20 | 只看該作者
https://doi.org/10.1007/978-3-662-53521-9Algebra; Funktor; Kategorie; Morphismen; algebraische Strukturen; Aufgaben und L?sungen zu Kategorientheo
33#
發(fā)表于 2025-3-27 07:06:48 | 只看該作者
978-3-662-53520-2Springer-Verlag GmbH Deutschland 2017
34#
發(fā)表于 2025-3-27 09:51:06 | 只看該作者
Grit Walther,Britta Engel,Thomas Spenglerruktionen und Theorien der Mathematik aufdecken kann. Wenn die Mathematik die Realit?t abstrahiert, so soll die Kategorientheorie von den Details der mathematischen Theorien abstrahieren und damit die Architektur der Mathematik aufzeigen. Das Ziel ist also eine .. Der Grundgedanke ist dabei, die . z
35#
發(fā)表于 2025-3-27 17:36:30 | 只看該作者
Heinrich Tschochohei,Jan Z?cklertrischer oder algebraischer Natur), die man gerne klassifizieren m?chte. Dabei bedeutet ., dass man eine m?glichst überschaubare Menge von unterschiedlichen Objekten findet, sodass jedes Objekt der Theorie im Wesentlichen mit einem Objekt aus dieser Menge übereinstimmt, d.h. also ., man sagt auch .
36#
發(fā)表于 2025-3-27 21:13:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:37 | 只看該作者
G. C. Williams,A. F. Sarofim,N. Lambertn Strukturen (Monoid, Gruppe, Ring usw.) zu einem allgemeinen Konzept zusammenfassen kann. Der Vorteil dieser . ([BS81]) liegt für uns darin, dass wir kategorielle Konstruktionen auf einen Schlag für s?mtliche algebraische Strukturen gleichzeitig durchführen k?nnen. Das wird insbesondere in den Kap.
38#
發(fā)表于 2025-3-28 02:26:06 | 只看該作者
https://doi.org/10.1007/978-3-662-07015-4struieren? Oftmals helfen dabei . weiter, die wir in diesem Kapitel mithilfe des Konzepts eines . einführen und in Kap. 6 über . n?her studieren werden. Tats?chlich ist die Mathematik geradezu übers?t mit universellen Eigenschaften, und dem Leser sind sicherlich schon einige Beispiele – eventuell un
39#
發(fā)表于 2025-3-28 10:19:13 | 只看該作者
,Fazit: Forschungsfragen für die Zukunft,abei sollte u.a. ein Assoziativgesetz bis auf Isomorphie gelten, wie wir es zum Beispiel für kategorielle Produkte gesehen haben (vgl. Lemma 6.2.8). Viele Kategorien besitzen eine monoidale Struktur oder sogar gleich mehrere monoidale Strukturen.
40#
發(fā)表于 2025-3-28 13:41:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
保康县| 荆门市| 乐山市| 安陆市| 西乡县| 平山县| 陵川县| 城口县| 铅山县| 万山特区| 广元市| 广平县| 抚宁县| 安吉县| 翁牛特旗| 绿春县| 白沙| 奉贤区| 栖霞市| 饶阳县| 开平市| 休宁县| 浠水县| 比如县| 和林格尔县| 横山县| 军事| 辉县市| 西安市| 杨浦区| 博爱县| 武城县| 香格里拉县| 赣州市| 宜良县| 滕州市| 克什克腾旗| 宁津县| 固安县| 深水埗区| 沽源县|