找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in Algebra und Zahlentheorie; Rainer Schulze-Pillot Textbook 2015Latest edition Springer-Verlag Berlin Heidelberg 2015 Algebra.

[復(fù)制鏈接]
樓主: 變更
21#
發(fā)表于 2025-3-25 04:33:49 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:16 | 只看該作者
23#
發(fā)表于 2025-3-25 12:31:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:51 | 只看該作者
Gruppen,ngruppe. Da es keinen einheitlichen Standard dafür gibt, wie viel Gruppentheorie in der Grundvorlesung über lineare Algebra behandelt wird, beginnen wir sicherheitshalber noch einmal mit der Definition einer Gruppe und wiederholen hier auch das, was wir im Kapitel 0 bereits über Gruppen aufgelistet haben.
25#
發(fā)表于 2025-3-25 23:33:48 | 只看該作者
26#
發(fā)表于 2025-3-26 02:22:03 | 只看該作者
,Endliche K?rper,s gegebenen Grades es über einem endlichen K?rper gibt. Als zahlentheoretische Anwendung dieser Theorie ergibt sich ein weiterer Beweis des quadratischen Reziprozit?tsgesetzes und seiner Erg?nzungss?tze. Ein erg?nzender Abschnitt behandelt Anwendungen in der Theorie der fehlerkorrigierenden Codes.
27#
發(fā)表于 2025-3-26 07:39:45 | 只看該作者
https://doi.org/10.1007/978-94-007-6208-4Abschnitt für den bekannten eleganten Beweis der S?tze der linearen Algebra über die Jordan’sche Normalform und über rationale Normalformen von Endomorphismen von Vektorr?umen benutzt. Ebenfalls in diesem Kapitel wird die Charaktertheorie der endlichen abelschen Gruppen und mit ihrer Hilfe die Theorie der diskreten Fouriertransformation behandelt.
28#
發(fā)表于 2025-3-26 10:35:54 | 只看該作者
Carl Chiarella,Peter Flaschel,Willi SemmlerK?rper, etwa dem K?rper ?.. In einem erg?nzenden Abschnitt behandeln wir die Anwendung der K?rpertheorie auf das klassische Problem der Konstruktion mit Zirkel und Lineal (Quadratur des Kreises, Dreiteilung des Winkels, Konstruktion des regelm??igen .-Ecks).
29#
發(fā)表于 2025-3-26 15:46:46 | 只看該作者
Abelsche Gruppen und Charaktere,Abschnitt für den bekannten eleganten Beweis der S?tze der linearen Algebra über die Jordan’sche Normalform und über rationale Normalformen von Endomorphismen von Vektorr?umen benutzt. Ebenfalls in diesem Kapitel wird die Charaktertheorie der endlichen abelschen Gruppen und mit ihrer Hilfe die Theorie der diskreten Fouriertransformation behandelt.
30#
發(fā)表于 2025-3-26 17:37:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阆中市| 根河市| 泌阳县| 沐川县| 通河县| 苏尼特右旗| 南川市| 新平| 谢通门县| 宁都县| 阿图什市| 莫力| 布尔津县| 九江县| 德安县| 宁河县| 礼泉县| 施秉县| 平顶山市| 汶上县| 公主岭市| 灌南县| 冀州市| 香格里拉县| 墨竹工卡县| 淮北市| 鄯善县| 上饶市| 高台县| 大丰市| 芦山县| 永清县| 合肥市| 民权县| 玉田县| 扎兰屯市| 济源市| 峡江县| 万安县| 静海县| 高碑店市|