找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eine Entdeckungsreise in die Welt des Unendlichen; Die Grundlagen der M Lorenz Halbeisen,Regula Krapf Textbook 2023 Der/die Herausgeber bzw

[復(fù)制鏈接]
樓主: FETID
51#
發(fā)表于 2025-3-30 10:19:03 | 只看該作者
,Kardinalit?ten und Wohlordnungen,emeinert die Mengen der natürlichen Zahlen auf zwei Weisen ins Unendliche: Einerseits durch Kardinalit?ten, welche Aufschluss über die M?chtigkeit einer Menge geben und andererseits durch Wohlordnungstypen, mit welchen man im Unendlichen weiterz?hlen kann. Beide Begriffe werden in diesem Kapitel so
52#
發(fā)表于 2025-3-30 16:21:32 | 只看該作者
53#
發(fā)表于 2025-3-30 20:21:59 | 只看該作者
Ordinalzahlen,t gesetzt. Die Ordinalzahlen erm?glichen ein Z?hlen im Unendlichen und mit der Ordinalzahlarithmetik kann man Rechenoperationen einführen, die diejenigen auf den natürlichen Zahlen erweitern, aber nicht denselben Rechengesetzen folgen. Au?erdem werden mit dem Wohlordnungssatz und dem Teichmüllerprin
54#
發(fā)表于 2025-3-30 21:53:16 | 只看該作者
Kardinalzahlen,lzahlen l?sst sich die M?chtigkeit von wohlgeordneten Mengen vergleichen. Auch mit Kardinalzahlen kann man rechnen; es handelt sich aber nicht um dieselbe Arithmetik wie für Ordinalzahlen. Besonders faszinierend ist die Frage nach der M?chtigkeit der Menge der reellen Zahlen: Die sogenannte Kontinuu
55#
發(fā)表于 2025-3-31 01:21:11 | 只看該作者
56#
發(fā)表于 2025-3-31 06:50:03 | 只看該作者
Permutationsmodelle, immer noch gelten. In diesem Kapitel wird gezeigt, wie man Permutationsmodelle mithilfe von Symmetriegruppen konstruiert. Mit dem Zweiten Fraenkelschen Modell wird ein Beispiel für ein Permutationsmodell betrachtet, in welchem eine abz?hlbare Vereinigung von 2-elementigen Mengen überabz?hlbar ist.
57#
發(fā)表于 2025-3-31 10:45:02 | 只看該作者
58#
發(fā)表于 2025-3-31 15:39:48 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:24 | 只看該作者
Determiniertheit unendlicher Spiele,rantiert. Das Determiniertheitsaxiom und das Auswahlaxiom schlie?en sich allerdings gegenseitig aus. Anschlie?end werden verschiedene Regularit?tsprinzipien wie die Frage, ob jede Menge reeller Zahlen messbar ist, sowohl unter Annahme des Auswahlaxioms als auch des Axioms der Determiniertheitsaxioms
60#
發(fā)表于 2025-3-31 23:58:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北区| 安阳市| 隆德县| 龙胜| 徐闻县| 海林市| 营山县| 桂阳县| 玉环县| 台南县| 昌宁县| 图们市| 永安市| 定南县| 峨边| 平凉市| 贡嘎县| 台州市| 蛟河市| 道孚县| 合山市| 门源| 将乐县| 通许县| 聂荣县| 呼图壁县| 宁远县| 衡阳县| 铜川市| 花莲市| 西丰县| 浠水县| 仁化县| 岳阳市| 灌阳县| 遵义县| 伊吾县| 蒙山县| 从化市| 全南县| 长治县|