找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Methods for Valuing Interest Rate Derivatives; Antoon Pelsser Book 2000 Springer-Verlag London 2000 Portfolio.Stochastic modelli

[復(fù)制鏈接]
樓主: 自由
31#
發(fā)表于 2025-3-26 21:15:56 | 只看該作者
Extensions and Further Developmentsand experience on working with interest rate models and how to adapt and extend these models for various purposes. Note that this final chapter is written in the “I” form to emphasise the fact that I express my personal views here. I feel this is necessary, as the practical implementation of pricing models is as much an art as it is pure science.
32#
發(fā)表于 2025-3-27 04:09:11 | 只看該作者
33#
發(fā)表于 2025-3-27 09:05:32 | 只看該作者
978-1-84996-861-4Springer-Verlag London 2000
34#
發(fā)表于 2025-3-27 10:30:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:09:29 | 只看該作者
Der Ewige Kreislauf des Weltallsver, interest rates play a double role in interest rate models: they determine the amount of discounting, and they determine the payoff of the security. This implies that the discounting term and the payoff term are two correlated stochastic variables, which makes the evaluation of the expectation quite difficult.
37#
發(fā)表于 2025-3-28 01:31:20 | 只看該作者
hapter 4 we proved that only normal models where the spot interest rate is a linear or quadratic function of the underlying process . have normally distributed fundamental solutions. Hence, only these models are expected to have a rich analytical structure.
38#
發(fā)表于 2025-3-28 03:51:09 | 只看該作者
https://doi.org/10.1007/978-3-662-41237-4own how this theory can be used for valuing interest rate derivatives. We analysed in Chapters 5 and 6 a linear and a squared normal model which both have a rich analytical structure. However, only little attention has been devoted to the empirical validity of these models. In this chapter we address this problem.
39#
發(fā)表于 2025-3-28 07:13:58 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特右旗| 缙云县| 辉南县| 灌云县| 巴马| 武隆县| 德令哈市| 上饶县| 桐城市| 吉木乃县| 彩票| 册亨县| 社旗县| 汕尾市| 子洲县| 辽宁省| 石泉县| 桐乡市| 田林县| 通城县| 棋牌| 江门市| 陵水| 湘潭市| 新安县| 虎林市| 永丰县| 郸城县| 兴安县| 无锡市| 申扎县| 荥阳市| 广德县| 冷水江市| 连南| 茶陵县| 桐梓县| 营山县| 桂东县| 利川市| 沭阳县|