找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Methods for Valuing Interest Rate Derivatives; Antoon Pelsser Book 2000 Springer-Verlag London 2000 Portfolio.Stochastic modelli

[復(fù)制鏈接]
樓主: 自由
31#
發(fā)表于 2025-3-26 21:15:56 | 只看該作者
Extensions and Further Developmentsand experience on working with interest rate models and how to adapt and extend these models for various purposes. Note that this final chapter is written in the “I” form to emphasise the fact that I express my personal views here. I feel this is necessary, as the practical implementation of pricing models is as much an art as it is pure science.
32#
發(fā)表于 2025-3-27 04:09:11 | 只看該作者
33#
發(fā)表于 2025-3-27 09:05:32 | 只看該作者
978-1-84996-861-4Springer-Verlag London 2000
34#
發(fā)表于 2025-3-27 10:30:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:09:29 | 只看該作者
Der Ewige Kreislauf des Weltallsver, interest rates play a double role in interest rate models: they determine the amount of discounting, and they determine the payoff of the security. This implies that the discounting term and the payoff term are two correlated stochastic variables, which makes the evaluation of the expectation quite difficult.
37#
發(fā)表于 2025-3-28 01:31:20 | 只看該作者
hapter 4 we proved that only normal models where the spot interest rate is a linear or quadratic function of the underlying process . have normally distributed fundamental solutions. Hence, only these models are expected to have a rich analytical structure.
38#
發(fā)表于 2025-3-28 03:51:09 | 只看該作者
https://doi.org/10.1007/978-3-662-41237-4own how this theory can be used for valuing interest rate derivatives. We analysed in Chapters 5 and 6 a linear and a squared normal model which both have a rich analytical structure. However, only little attention has been devoted to the empirical validity of these models. In this chapter we address this problem.
39#
發(fā)表于 2025-3-28 07:13:58 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宁县| 浏阳市| 上蔡县| 同仁县| 林甸县| 乌兰县| 白玉县| 深水埗区| 美姑县| 厦门市| 安陆市| 遂平县| 丹棱县| 建始县| 肇东市| 宁安市| 台江县| 衡水市| 辉南县| 无极县| 南溪县| 博乐市| 勐海县| 郸城县| 枣强县| 汉川市| 离岛区| 金阳县| 苏州市| 民县| 财经| 西华县| 宾阳县| 宣武区| 龙海市| 越西县| 贵阳市| 鹤庆县| 大竹县| 鹤庆县| 尼木县|