找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[復(fù)制鏈接]
樓主: infection
11#
發(fā)表于 2025-3-23 12:03:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:30:55 | 只看該作者
Bayesian Neural Networks and GLM,nt of our a priori knowledge about parameters based on Markov Chain Monte Carlo methods. In order to explain those methods that are based on simulations, we need to review the main features of Markov chains.
13#
發(fā)表于 2025-3-23 21:52:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:09 | 只看該作者
Self-organizing Maps and k-Means Clustering in Non Life Insurance,curacy of the prediction. In this situation, the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Self-organizing maps offer an elegant solution to segment explanatory variables and to detect dependence among covariates.
15#
發(fā)表于 2025-3-24 02:27:30 | 只看該作者
Textbook 2019neously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible...Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-for
16#
發(fā)表于 2025-3-24 06:36:45 | 只看該作者
2523-3262 udy.Features a rigorous statistical analysis of neural netwo.This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a s
17#
發(fā)表于 2025-3-24 14:22:06 | 只看該作者
18#
發(fā)表于 2025-3-24 14:58:48 | 只看該作者
Das Rezidiv in der gyn?kologischen Onkologieward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
19#
發(fā)表于 2025-3-24 19:57:31 | 只看該作者
Neues Selbstbild und Rollenprofilwe cannot rely anymore on asymptotic properties of maximum likelihood estimators to approximate confidence intervals. Applying the Bayesian learning paradigm to neural networks or to generalized linear models results in a powerful framework that can be used for estimating the density of predictors.
20#
發(fā)表于 2025-3-25 02:53:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东安县| 铅山县| 新郑市| 鸡西市| 玉环县| 九龙县| 武邑县| 平安县| 鄂温| 巴里| 西平县| 鄂托克旗| 铜川市| 陇南市| 梁平县| 英吉沙县| 垣曲县| 梨树县| 收藏| 隆回县| 胶州市| 城固县| 澎湖县| 石屏县| 湖北省| 蓝田县| 靖江市| 清水县| 芜湖市| 松潘县| 馆陶县| 兰考县| 沐川县| 武清区| 昭通市| 大方县| 休宁县| 雅江县| 唐山市| 建平县| 汶上县|