找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[復(fù)制鏈接]
查看: 37622|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:39:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Effective Statistical Learning Methods for Actuaries III
副標(biāo)題Neural Networks and
編輯Michel Denuit,Donatien Hainaut,Julien Trufin
視頻videohttp://file.papertrans.cn/303/302812/302812.mp4
概述Provides an exhaustive and self-contained presentation of neural networks applied to insurance.Can be used as course material or for self-study.Features a rigorous statistical analysis of neural netwo
叢書名稱Springer Actuarial
圖書封面Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and  Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S
描述.This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible...Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting..Requiring only a basic knowledge of statistics, this book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning...This is the third of three volumes entitled .Effective Statistical Learning Methods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently..
出版日期Textbook 2019
關(guān)鍵詞62P05, 62-XX, 68-XX, 62M45; deep learing for insurance; neural networks; machine learning; actuarial mod
版次1
doihttps://doi.org/10.1007/978-3-030-25827-6
isbn_softcover978-3-030-25826-9
isbn_ebook978-3-030-25827-6Series ISSN 2523-3262 Series E-ISSN 2523-3270
issn_series 2523-3262
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Effective Statistical Learning Methods for Actuaries III影響因子(影響力)




書目名稱Effective Statistical Learning Methods for Actuaries III影響因子(影響力)學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries III網(wǎng)絡(luò)公開度




書目名稱Effective Statistical Learning Methods for Actuaries III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries III被引頻次




書目名稱Effective Statistical Learning Methods for Actuaries III被引頻次學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries III年度引用




書目名稱Effective Statistical Learning Methods for Actuaries III年度引用學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries III讀者反饋




書目名稱Effective Statistical Learning Methods for Actuaries III讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:57:52 | 只看該作者
Effective Statistical Learning Methods for Actuaries IIINeural Networks and
板凳
發(fā)表于 2025-3-22 02:55:31 | 只看該作者
Matth?us Ebinal,Valery Mitjuschkin Shu and Burn (Water Resour Res 40:1–10, 2004) forecast flood frequencies with an ensemble of networks. We start this chapter by describing the bias-variance decomposition of the prediction error. Next, we discuss how aggregated models and randomized models reduce the prediction error by decreasing
地板
發(fā)表于 2025-3-22 06:41:41 | 只看該作者
Textbook 2019hods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently..
5#
發(fā)表于 2025-3-22 09:15:03 | 只看該作者
6#
發(fā)表于 2025-3-22 15:48:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:16:39 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:16 | 只看該作者
Dimension-Reduction with Forward Neural Nets Applied to Mortality,native to principal component analysis (PCA) or non-linear PCA. In actuarial sciences, these networks can be used for understanding the evolution of longevity during the last century. We also introduce in this chapter a genetic algorithm for calibrating the neural networks. This method combined with a gradient descent speeds up the calibration.
9#
發(fā)表于 2025-3-23 02:47:03 | 只看該作者
Neues Selbstbild und Rollenprofilnt of our a priori knowledge about parameters based on Markov Chain Monte Carlo methods. In order to explain those methods that are based on simulations, we need to review the main features of Markov chains.
10#
發(fā)表于 2025-3-23 07:34:17 | 只看該作者
Lando Kirchmair,Daniel-Erasmus Khands of regularization for avoiding the overfitting. We next explain why deep neural networks outperform shallow networks for approximating hierarchical binary functions. This chapter is concluded by a numerical illustration.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾阳县| 嘉禾县| 宝兴县| 汉寿县| 静乐县| 呼伦贝尔市| 石狮市| 祁门县| 县级市| 武穴市| 思南县| 湾仔区| 东至县| 濮阳市| 镇远县| 渭南市| 峨边| 格尔木市| 错那县| 拉萨市| 华容县| 铁岭县| 灵寿县| 阜平县| 永春县| 汽车| 崇明县| 鱼台县| 民县| 三门峡市| 高尔夫| 桐梓县| 南岸区| 北票市| 老河口市| 牙克石市| 德格县| 本溪| 大田县| 盐池县| 高淳县|