找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries II; Tree-Based Methods a Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2020 Sp

[復(fù)制鏈接]
樓主: 鳥場
11#
發(fā)表于 2025-3-23 11:41:46 | 只看該作者
12#
發(fā)表于 2025-3-23 14:32:20 | 只看該作者
Performance Evaluation,In actuarial pricing, the objective is to evaluate the pure premium as accurately as possible. The target is thus the conditional expectation . of the response . (claim number or claim amount for instance) given the available information ..
13#
發(fā)表于 2025-3-23 19:18:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:46:04 | 只看該作者
Bagging Trees and Random Forests,Two ensemble methods are considered in this chapter, namely bagging trees and random forests. One issue with regression trees is their high variance. There is a high variability of the prediction . over the trees trained from all possible training sets .. Bagging trees and random forests aim to reduce the variance without too much altering bias.
15#
發(fā)表于 2025-3-24 05:41:16 | 只看該作者
Boosting Trees,Bagging trees and random forests base their predictions on an ensemble of trees. In this chapter, we consider another training procedure based on an ensemble of trees, called boosting trees. However, the way the trees are produced and combined differ between random forests (and so bagging trees) and boosting trees.
16#
發(fā)表于 2025-3-24 10:05:24 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:29 | 只看該作者
2523-3262 ree-based methods.Fills a gap in the literature on artificia.This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based mode
18#
發(fā)表于 2025-3-24 18:06:31 | 只看該作者
,Zur Elektrodynamik bewegter K?rper, of the contract, without loss nor profit. Under the conditions of validity of the law of large numbers, the pure premium is the expected amount of compensation to be paid by the insurer (sometimes discounted to policy issue in case of long-term liabilities).
19#
發(fā)表于 2025-3-24 21:10:01 | 只看該作者
20#
發(fā)表于 2025-3-25 01:13:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 九龙坡区| 石林| 乾安县| 郯城县| 无为县| 曲阳县| 涟源市| 天气| 芜湖县| 云和县| 南通市| 寻乌县| 安远县| 白山市| 丰镇市| 乌鲁木齐市| 古浪县| 南郑县| 青神县| 昌宁县| 安顺市| 平南县| 新泰市| 庐江县| 教育| 宜州市| 多伦县| 天等县| 昌黎县| 丹江口市| 准格尔旗| 囊谦县| 鹰潭市| 东辽县| 嘉义县| 沧源| 湄潭县| 丰镇市| 资源县| 洛阳市|