找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries II; Tree-Based Methods a Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2020 Sp

[復(fù)制鏈接]
查看: 37728|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:00:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Effective Statistical Learning Methods for Actuaries II
副標(biāo)題Tree-Based Methods a
編輯Michel Denuit,Donatien Hainaut,Julien Trufin
視頻videohttp://file.papertrans.cn/303/302811/302811.mp4
概述Provides an exhaustive and self-contained presentation of tree-based methods applied to insurance.Gives a rigorous statistical analysis of tree-based methods.Fills a gap in the literature on artificia
叢書名稱Springer Actuarial
圖書封面Titlebook: Effective Statistical Learning Methods for Actuaries II; Tree-Based Methods a Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2020 Sp
描述.This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities...The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master‘s students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful...This is the second of three volumes entitled .Effective Statistical Learning Methods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurancedata analytics with applications to P&C, life and health insurance..
出版日期Textbook 2020
關(guān)鍵詞tree-based methods for insurance; supervised learning; machine learning; actuarial modeling; insurance r
版次1
doihttps://doi.org/10.1007/978-3-030-57556-4
isbn_softcover978-3-030-57555-7
isbn_ebook978-3-030-57556-4Series ISSN 2523-3262 Series E-ISSN 2523-3270
issn_series 2523-3262
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Effective Statistical Learning Methods for Actuaries II影響因子(影響力)




書目名稱Effective Statistical Learning Methods for Actuaries II影響因子(影響力)學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries II網(wǎng)絡(luò)公開度




書目名稱Effective Statistical Learning Methods for Actuaries II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries II被引頻次




書目名稱Effective Statistical Learning Methods for Actuaries II被引頻次學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries II年度引用




書目名稱Effective Statistical Learning Methods for Actuaries II年度引用學(xué)科排名




書目名稱Effective Statistical Learning Methods for Actuaries II讀者反饋




書目名稱Effective Statistical Learning Methods for Actuaries II讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:42 | 只看該作者
978-3-030-57555-7Springer Nature Switzerland AG 2020
板凳
發(fā)表于 2025-3-22 02:24:06 | 只看該作者
Effective Statistical Learning Methods for Actuaries II978-3-030-57556-4Series ISSN 2523-3262 Series E-ISSN 2523-3270
地板
發(fā)表于 2025-3-22 05:08:43 | 只看該作者
,Zur Elektrodynamik bewegter K?rper,The pure premium is the amount collected by the insurance company, to be re-distributed as benefits among policyholders and third parties in execution of the contract, without loss nor profit. Under the conditions of validity of the law of large numbers, the pure premium is the expected amount of co
5#
發(fā)表于 2025-3-22 09:31:37 | 只看該作者
6#
發(fā)表于 2025-3-22 13:58:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:10 | 只看該作者
8#
發(fā)表于 2025-3-22 22:49:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:50:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南涧| 乐亭县| 镇坪县| 河西区| 什邡市| 青阳县| 类乌齐县| 高邮市| 黄梅县| 峨眉山市| 柘荣县| 武宁县| 长岭县| 昔阳县| 扬州市| 台东县| 哈巴河县| 甘德县| 阿图什市| 桓台县| 黄陵县| 安西县| 麻栗坡县| 汨罗市| 孝义市| 奉贤区| 普定县| 沭阳县| 射阳县| 淄博市| 峡江县| 子长县| 长海县| 四平市| 江安县| 迁安市| 灵台县| 尉氏县| 昭觉县| 邛崃市| 新兴县|