找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Statistical Modelling; Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki Conference proceedings 2024 The Editor(s) (if ap

[復制鏈接]
樓主: 動詞
31#
發(fā)表于 2025-3-26 21:39:56 | 只看該作者
,Derivatives of?the?Log of?a?Determinant,We present an efficient way to calculate effective model dimensions, using automated differentiation of the Cholesky algorithm. The method is illustrated with two examples using P-splines: adaptive smoothing and smoothing of over-dispersed counts.
32#
發(fā)表于 2025-3-27 01:36:38 | 只看該作者
,REML for?Two-Dimensional P-Splines,to a mixed model; in the new model it is shown that a more direct method can be used keeping the sparse structure of P-splines. The method is illustrated with a two-dimensional example using the R-package . on CRAN. We will show that for this example . is several orders of magnitude faster than othe
33#
發(fā)表于 2025-3-27 09:03:17 | 只看該作者
,Learning Bayesian Networks from?Ordinal Data - The Bayesian Way,Bayesian method, referred to as the ordinal structural expectation maximization (OSEM) method. Both methods assume that the ordinal variables originate from Gaussian variables, which can only be observed in discretized form, and that the dependencies in the unobserved latent Gaussian space can be de
34#
發(fā)表于 2025-3-27 09:26:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:16:25 | 只看該作者
,Bayesian Approaches to?Model Overdispersion in?Spatio-Temporal Binomial Data,iables. This proposal incorporates a spatial term similar to the spatial lag of the response variable for each time unit within the linear predictor. These models effectively capture both spatial and temporal correlations inherent in the dataset under study. Furthermore, we introduce temporally vary
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:31 | 只看該作者
,Addressing Covariate Lack in?Unit-Level Small Area Models Using GAMLSS,es in the unit-level SAE field: the identification of individual covariates and the reduction of computational burden. We propose a unit-level Simplified SAE model based on Generalized Additive Models for Location, Scale and Shape (GAMLSS), which is specified without covariates and is able to reduce
38#
發(fā)表于 2025-3-28 03:56:06 | 只看該作者
,Optimism Correction of?the?AUC with?Complex Survey Data,ed to estimate the area under the receiver operating characteristic curve in this context. However, the proposed estimator has shown an optimistic behaviour. Thus, the goal of this work is to analyze the performance of replicate weights methods to correct for the optimism of the AUC in the context o
39#
發(fā)表于 2025-3-28 06:56:24 | 只看該作者
,Statistical Models for?Patient-Centered Outcomes in?Clinical Studies,t of the first M postoperative days, that the patient has been discharged from hospital, or zero if the patient dies within M days of surgery. This composite measure presents statistical challenges in its unusual distributional shape, and its inability to distinguish between the qualitatively differ
40#
發(fā)表于 2025-3-28 13:23:48 | 只看該作者
,Bayesian Hidden Markov Models for?Early Warning,umes that every binary response variable depends only on the latent state further to the lagged covariates and response. A Markov chain Monte Carlo algorithm is proposed for estimation and forecasting, where the latter is based on the optimisation of the F-score. An application referred to banking c
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
九龙城区| 磴口县| 黔南| 本溪市| 莎车县| 松原市| 邯郸市| 通榆县| 新源县| 嘉义市| 仙桃市| 榆树市| 大荔县| 固原市| 白水县| 资阳市| 济宁市| 黄石市| 广宗县| 济阳县| 肃北| 安西县| 明溪县| 蓝田县| 平果县| 屏南县| 大关县| 大名县| 文成县| 井研县| 伊金霍洛旗| 阿克苏市| 哈尔滨市| 荥经县| 甘泉县| 边坝县| 梨树县| 广宗县| 托克逊县| 苍梧县| 梁平县|