找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Statistical Modelling; Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki Conference proceedings 2024 The Editor(s) (if ap

[復制鏈接]
查看: 30433|回復: 64
樓主
發(fā)表于 2025-3-21 19:53:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Developments in Statistical Modelling
編輯Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki
視頻videohttp://file.papertrans.cn/285/284616/284616.mp4
概述Provides a snapshot of the current developments in statistical modelling.Covers a wide range of topics and applications, particularly from biostatistics.Brings together researchers and practitioners w
叢書名稱Contributions to Statistics
圖書封面Titlebook: Developments in Statistical Modelling;  Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki Conference proceedings 2024 The Editor(s) (if ap
描述.This volume on the latest developments in statistical modelling is a collection of refereed papers presented at the 38th International Workshop on Statistical Modelling, IWSM 2024, held from 14 to 19 July 2024 in Durham, UK. The contributions cover a wide range of topics in statistical modelling, including generalized linear models, mixture models, regularization techniques, hidden Markov models, smoothing methods, censoring and imputation techniques, Gaussian processes, spatial statistics, shape modelling, goodness-of-fit problems, and network analysis. Various highly topical applications are presented as well, especially from biostatistics. The approaches are equally frequentist and Bayesian, a categorization the statistical modelling community has synergetically overcome. The book also features the workshop’s keynote contribution on statistical modelling for big and little data, highlighting that both small and large data sets come with their own challenges...The International Workshop on Statistical Modelling (IWSM) is the annual workshop of the Statistical Modelling Society, with the purpose of promoting important developments, extensions, and applications in statistical mode
出版日期Conference proceedings 2024
關(guān)鍵詞Statistical Modelling; Generalized Linear Models; Mixture Models; Regularization; Bayesian Inference; Spa
版次1
doihttps://doi.org/10.1007/978-3-031-65723-8
isbn_softcover978-3-031-65725-2
isbn_ebook978-3-031-65723-8Series ISSN 1431-1968 Series E-ISSN 2628-8966
issn_series 1431-1968
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Developments in Statistical Modelling影響因子(影響力)




書目名稱Developments in Statistical Modelling影響因子(影響力)學科排名




書目名稱Developments in Statistical Modelling網(wǎng)絡(luò)公開度




書目名稱Developments in Statistical Modelling網(wǎng)絡(luò)公開度學科排名




書目名稱Developments in Statistical Modelling被引頻次




書目名稱Developments in Statistical Modelling被引頻次學科排名




書目名稱Developments in Statistical Modelling年度引用




書目名稱Developments in Statistical Modelling年度引用學科排名




書目名稱Developments in Statistical Modelling讀者反饋




書目名稱Developments in Statistical Modelling讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:54:12 | 只看該作者
Jochen Einbeck,Hyeyoung Maeng,Konstantinos PerrakiProvides a snapshot of the current developments in statistical modelling.Covers a wide range of topics and applications, particularly from biostatistics.Brings together researchers and practitioners w
地板
發(fā)表于 2025-3-22 08:30:15 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:15 | 只看該作者
6#
發(fā)表于 2025-3-22 16:07:04 | 只看該作者
,Shrinkage in?a?Bayesian Panel Data Model with?Time-Varying Coefficients,n approach with priors that allow shrinkage to constant and zero effects as well as to simpler dependence structures. The model is evaluated in a simulation study and applied to the analysis of yearly earnings of mothers in Austria who returned to the labour market after maternity leave.
7#
發(fā)表于 2025-3-22 20:03:53 | 只看該作者
to a mixed model; in the new model it is shown that a more direct method can be used keeping the sparse structure of P-splines. The method is illustrated with a two-dimensional example using the R-package . on CRAN. We will show that for this example . is several orders of magnitude faster than othe
8#
發(fā)表于 2025-3-22 23:35:46 | 只看該作者
Bayesian method, referred to as the ordinal structural expectation maximization (OSEM) method. Both methods assume that the ordinal variables originate from Gaussian variables, which can only be observed in discretized form, and that the dependencies in the unobserved latent Gaussian space can be de
9#
發(fā)表于 2025-3-23 04:43:46 | 只看該作者
access to data from community engagement activities and social media content. However, novel analytic methods are required to process and analyse data in unstructured formats (e.g. transcripts, text and images) and to extract useful information for decision-making. This paper proposes an analytics
10#
發(fā)表于 2025-3-23 08:56:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
板桥市| 城固县| 荆门市| 封开县| 土默特左旗| 马山县| 娱乐| 长春市| 怀化市| 邯郸县| 浦东新区| 类乌齐县| 陇南市| 长寿区| 北海市| 兰考县| 海宁市| 深州市| 曲松县| 长泰县| 洮南市| 庄浪县| 吴江市| 大方县| 利津县| 安西县| 涞源县| 高淳县| 莱西市| 贵阳市| 沧州市| 长子县| 兴和县| 浮梁县| 高安市| 德兴市| 依安县| 包头市| 孙吴县| 体育| 岑巩县|