找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Statistical Modelling; Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki Conference proceedings 2024 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 動(dòng)詞
31#
發(fā)表于 2025-3-26 21:39:56 | 只看該作者
,Derivatives of?the?Log of?a?Determinant,We present an efficient way to calculate effective model dimensions, using automated differentiation of the Cholesky algorithm. The method is illustrated with two examples using P-splines: adaptive smoothing and smoothing of over-dispersed counts.
32#
發(fā)表于 2025-3-27 01:36:38 | 只看該作者
,REML for?Two-Dimensional P-Splines,to a mixed model; in the new model it is shown that a more direct method can be used keeping the sparse structure of P-splines. The method is illustrated with a two-dimensional example using the R-package . on CRAN. We will show that for this example . is several orders of magnitude faster than othe
33#
發(fā)表于 2025-3-27 09:03:17 | 只看該作者
,Learning Bayesian Networks from?Ordinal Data - The Bayesian Way,Bayesian method, referred to as the ordinal structural expectation maximization (OSEM) method. Both methods assume that the ordinal variables originate from Gaussian variables, which can only be observed in discretized form, and that the dependencies in the unobserved latent Gaussian space can be de
34#
發(fā)表于 2025-3-27 09:26:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:16:25 | 只看該作者
,Bayesian Approaches to?Model Overdispersion in?Spatio-Temporal Binomial Data,iables. This proposal incorporates a spatial term similar to the spatial lag of the response variable for each time unit within the linear predictor. These models effectively capture both spatial and temporal correlations inherent in the dataset under study. Furthermore, we introduce temporally vary
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:31 | 只看該作者
,Addressing Covariate Lack in?Unit-Level Small Area Models Using GAMLSS,es in the unit-level SAE field: the identification of individual covariates and the reduction of computational burden. We propose a unit-level Simplified SAE model based on Generalized Additive Models for Location, Scale and Shape (GAMLSS), which is specified without covariates and is able to reduce
38#
發(fā)表于 2025-3-28 03:56:06 | 只看該作者
,Optimism Correction of?the?AUC with?Complex Survey Data,ed to estimate the area under the receiver operating characteristic curve in this context. However, the proposed estimator has shown an optimistic behaviour. Thus, the goal of this work is to analyze the performance of replicate weights methods to correct for the optimism of the AUC in the context o
39#
發(fā)表于 2025-3-28 06:56:24 | 只看該作者
,Statistical Models for?Patient-Centered Outcomes in?Clinical Studies,t of the first M postoperative days, that the patient has been discharged from hospital, or zero if the patient dies within M days of surgery. This composite measure presents statistical challenges in its unusual distributional shape, and its inability to distinguish between the qualitatively differ
40#
發(fā)表于 2025-3-28 13:23:48 | 只看該作者
,Bayesian Hidden Markov Models for?Early Warning,umes that every binary response variable depends only on the latent state further to the lagged covariates and response. A Markov chain Monte Carlo algorithm is proposed for estimation and forecasting, where the latter is based on the optimisation of the F-score. An application referred to banking c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇坪县| 修文县| 凤城市| 峨边| 桦甸市| 连州市| 福清市| 察雅县| 高雄县| 阿拉善盟| 永丰县| 章丘市| 江山市| 宁都县| 霍林郭勒市| 射洪县| 元朗区| 巴青县| 县级市| 竹北市| 淮北市| 西吉县| 文登市| 南投市| 华安县| 渑池县| 新晃| 上饶市| 康定县| 海原县| 浦东新区| 盐津县| 新巴尔虎右旗| 若尔盖县| 大厂| 华坪县| 布拖县| 江北区| 柯坪县| 察雅县| 玉林市|