找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app

[復制鏈接]
樓主: 切口
51#
發(fā)表于 2025-3-30 10:50:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:25:56 | 只看該作者
,Vorbildfunktion der Führungskraft,compressed images, these metrics have shown very useful. Extensive tests of such metrics on benchmarks of artificially distorted natural images have revealed which metric best correlate with human perception of quality. Direct transfer of these metrics to the evaluation of generative models in medic
53#
發(fā)表于 2025-3-30 19:32:47 | 只看該作者
Christian St?we,Lara Keromosemitocal imaging. However, collecting the necessary amount of data is often impractical due to patient privacy concerns or restricted time for medical annotation. Recent advances in generative models in medical imaging with a focus on diffusion-based techniques could provide realistic-looking synthetic s
54#
發(fā)表于 2025-3-30 21:42:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:08:57 | 只看該作者
,Das ?rgernis: ?Der Druck macht fertig“, only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but u
56#
發(fā)表于 2025-3-31 06:23:06 | 只看該作者
Dieter Buchner,Josef A. Schmelzerconcerns. Existing image quality metrics often rely on reference images, are tailored for group comparisons, or are intended for 2D natural images, limiting their efficacy in complex domains like medical imaging. This study introduces a novel deep learning-based non-reference approach to assess brai
57#
發(fā)表于 2025-3-31 10:53:17 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:19 | 只看該作者
60#
發(fā)表于 2025-3-31 23:04:03 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 22:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇明县| 资阳市| 定西市| 浑源县| 宜州市| 丹东市| 锡林郭勒盟| 南通市| 邵东县| 长岛县| 惠州市| 屯留县| 运城市| 新民市| 陇南市| 内乡县| 乌兰浩特市| 巫山县| 靖远县| 辽源市| 车致| 古交市| 乾安县| 吴川市| 花垣县| 体育| 日照市| 南涧| 宜兴市| 高州市| 竹北市| 江西省| 武宣县| 九龙县| 宁城县| 溧水县| 金坛市| 获嘉县| 怀集县| 南澳县| 洱源县|