找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app

[復(fù)制鏈接]
查看: 7245|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:05:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Generative Models
副標(biāo)題4th MICCAI Workshop,
編輯Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan
視頻videohttp://file.papertrans.cn/285/284497/284497.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app
描述.This book constitutes the proceedings of the 4th workshop on?Deep Generative Models for Medical Image Computing and Computer Assisted Intervention,?DGM4MICCAI 2024, held in conjunction with the 27th International conference on?Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in?Marrakesh, Morocco in October 2024...The 21 papers presented here were carefully reviewed and selected from 40 submissions. These papers deal with a?broad range of topics, ranging from methodology (such as Causal inference, Latent interpretation, Generative factor analysis) to Applications (such as Mammography, Vessel imaging, Surgical videos and more)..
出版日期Conference proceedings 2025
關(guān)鍵詞Diffusion; VAE; GAN; Flow; Synthesis; Privacy; GenAI
版次1
doihttps://doi.org/10.1007/978-3-031-72744-3
isbn_softcover978-3-031-72743-6
isbn_ebook978-3-031-72744-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Deep Generative Models影響因子(影響力)




書(shū)目名稱Deep Generative Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Generative Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Generative Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Generative Models被引頻次




書(shū)目名稱Deep Generative Models被引頻次學(xué)科排名




書(shū)目名稱Deep Generative Models年度引用




書(shū)目名稱Deep Generative Models年度引用學(xué)科排名




書(shū)目名稱Deep Generative Models讀者反饋




書(shū)目名稱Deep Generative Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:37 | 只看該作者
,WDM: 3D Wavelet Diffusion Models for?High-Resolution Medical Image Synthesis,mostly apply patch-wise, slice-wise,?or cascaded generation techniques to fit the high-dimensional data?into the limited GPU memory. However, these approaches may introduce artifacts and potentially restrict the model’s applicability?for certain downstream tasks. This work presents WDM, a wavelet-ba
板凳
發(fā)表于 2025-3-22 03:34:45 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:41 | 只看該作者
,Anatomically-Guided Inpainting for?Local Synthesis of?Normal Chest Radiographs,ct to variability. As such, automated systems for pathology detection have been proposed and promising results have been obtained, particularly using deep learning. However, these tools suffer from poor explainability, which represents a major hurdle for their adoption in clinical practice. One prop
5#
發(fā)表于 2025-3-22 08:51:28 | 只看該作者
Enhancing Cross-Modal Medical Image Segmentation Through Compositionality,rasts, and appearances of anatomical structures. We introduce compositionality as an inductive bias in a cross-modal segmentation network to improve segmentation performance and interpretability while reducing complexity. The proposed network is an end-to-end cross-modal segmentation framework that
6#
發(fā)表于 2025-3-22 13:13:10 | 只看該作者
,Unpaired Modality Translation for?Pseudo Labeling of?Histology Images,ge. We propose a microscopy pseudo labeling pipeline utilizing unsupervised image translation to address this issue. Our method generates pseudo labels by translating between labeled and unlabeled domains without requiring prior annotation in the target domain. We evaluate two pseudo labeling strate
7#
發(fā)表于 2025-3-22 18:46:06 | 只看該作者
,SNAFusion: Distilling 2D Axial Plane Diffusion Priors for?Sparse-View 3D Cone-Beam CT Imaging, challenging inverse problem. Previous existing data-driven techniques employ 3D decoders with paired huge volumes of training datasets, resulting in limited generalizability and also ignoring the fact of clinical dataset shortage. Even though some implicit neural rendering (INR) methods are focused
8#
發(fā)表于 2025-3-22 22:36:16 | 只看該作者
SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young Peopl. Synthetically generated, age-adjusted brain images could serve as valuable alternatives to costly longitudinal imaging acquisitions, serve as internal controls for studies looking at the effects of environmental or therapeutic modifiers on brain development, and allow data augmentation for diverse
9#
發(fā)表于 2025-3-23 04:36:10 | 只看該作者
,Denoising Diffusion Models for?3D Healthy Brain Tissue Inpainting, volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusi
10#
發(fā)表于 2025-3-23 07:51:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇州县| 新闻| 南京市| 工布江达县| 柳州市| 民丰县| 新丰县| 济源市| 应用必备| 来宾市| 若羌县| 台州市| 德江县| 长岛县| 阿坝| 镇远县| 新余市| 开原市| 武威市| 镇雄县| 榆林市| 云林县| 凤台县| 阿坝县| 正安县| 松潘县| 贵定县| 扬州市| 贵德县| 辉县市| 太白县| 抚州市| 会同县| 西乡县| 咸宁市| 南丰县| 潍坊市| 乐清市| 民和| 丹东市| 商都县|