找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 16:13:10 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:37 | 只看該作者
Social Relation Enhanced Heterogeneous Graph Contrastive Learning for?Recommendationsers’ interests. These systems have showcased their significance in diverse scenarios, with particular prominence observed in applications related to social networks. Heterogeneous Graph Neural Networks (HGNNs) have shown success in recommendation tasks by embedding rich semantics from different rel
43#
發(fā)表于 2025-3-29 00:21:30 | 只看該作者
Higher-Order Graph Contrastive Learning for?Recommendation-item). However, the graph-based model struggles to mitigate the impact of data sparsity. Recent studies have attempted to tackle this problem by utilizing contrastive learning. Nevertheless, most of these methods rely on augmenting the data based on the original graph to construct contrastive views
44#
發(fā)表于 2025-3-29 04:14:01 | 只看該作者
: Evaluating the?Importance of?Propagations during Fake News Spread content, which may fail to determine fake news with disguised content. Graph-based models adopt extra media to construct graphs, which provide social context to identify fake news. However, existing graph-based models treat each media equally, neglecting the echo chamber phenomenon where most media
45#
發(fā)表于 2025-3-29 07:15:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:03:49 | 只看該作者
47#
發(fā)表于 2025-3-29 18:06:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:03:12 | 只看該作者
Beyond the?Known: Novel Class Discovery for?Open-World Graph Learningnarios, novel classes can emerge?on unlabeled testing nodes. However, little attention has been paid?to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated?by edges, which makes their representations indistinguishable?when applying
49#
發(fā)表于 2025-3-30 00:47:32 | 只看該作者
50#
發(fā)表于 2025-3-30 05:30:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米脂县| 青岛市| 高邮市| 赤水市| 古丈县| 瓮安县| 平塘县| 庆云县| 涿州市| 诸城市| 平湖市| 高台县| 崇信县| 新巴尔虎左旗| 三明市| 屯留县| 荆门市| 云阳县| 乐安县| 阿勒泰市| 郁南县| 佛教| 淮安市| 乐安县| 沾化县| 乐平市| 合川市| 茶陵县| 娄底市| 阜城县| 微博| 工布江达县| 盐亭县| 曲阜市| 连平县| 华宁县| 犍为县| 古交市| 舞阳县| 黑龙江省| 龙川县|