找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 16:13:10 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:37 | 只看該作者
Social Relation Enhanced Heterogeneous Graph Contrastive Learning for?Recommendationsers’ interests. These systems have showcased their significance in diverse scenarios, with particular prominence observed in applications related to social networks. Heterogeneous Graph Neural Networks (HGNNs) have shown success in recommendation tasks by embedding rich semantics from different rel
43#
發(fā)表于 2025-3-29 00:21:30 | 只看該作者
Higher-Order Graph Contrastive Learning for?Recommendation-item). However, the graph-based model struggles to mitigate the impact of data sparsity. Recent studies have attempted to tackle this problem by utilizing contrastive learning. Nevertheless, most of these methods rely on augmenting the data based on the original graph to construct contrastive views
44#
發(fā)表于 2025-3-29 04:14:01 | 只看該作者
: Evaluating the?Importance of?Propagations during Fake News Spread content, which may fail to determine fake news with disguised content. Graph-based models adopt extra media to construct graphs, which provide social context to identify fake news. However, existing graph-based models treat each media equally, neglecting the echo chamber phenomenon where most media
45#
發(fā)表于 2025-3-29 07:15:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:03:49 | 只看該作者
47#
發(fā)表于 2025-3-29 18:06:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:03:12 | 只看該作者
Beyond the?Known: Novel Class Discovery for?Open-World Graph Learningnarios, novel classes can emerge?on unlabeled testing nodes. However, little attention has been paid?to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated?by edges, which makes their representations indistinguishable?when applying
49#
發(fā)表于 2025-3-30 00:47:32 | 只看該作者
50#
發(fā)表于 2025-3-30 05:30:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌海市| 逊克县| 马龙县| 延吉市| 水富县| 泰州市| 敦煌市| 习水县| 武义县| 长阳| 余庆县| 岳西县| 子洲县| 林甸县| 灵武市| 瑞昌市| 长岛县| 敖汉旗| 孟州市| 贡觉县| 道真| 汤阴县| 延长县| 玉田县| 招远市| 隆回县| 马尔康县| 时尚| 沈阳市| 宜昌市| 桂东县| 雷州市| 行唐县| 临城县| 辉南县| 建宁县| 金溪县| 陆河县| 信丰县| 宿迁市| 东丰县|