找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
查看: 28719|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:33:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Database Systems for Advanced Applications
副標題29th International C
編輯Makoto Onizuka,Jae-Gil Lee,Kejing Lu
視頻videohttp://file.papertrans.cn/285/284468/284468.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito
描述.The seven-volume set LNCS 14850-14856 constitutes the proceedings of the 29th International Conference on Database Systems for Advanced Applications, DASFAA 2024, held in Gifu, Japan, in July 2024...The total of 147 full papers, along with 85 short papers, presented together in this seven-volume set was carefully reviewed and selected from 722 submissions...Additionally, 14 industrial papers, 18 demo papers and 6 tutorials are included...The conference presents papers on subjects such as:..Part I: Spatial and temporal data; database core technology; federated learning...Part II: Machine learning; text processing...Part III: Recommendation; multi-media...Part IV: Privacy and security; knowledge base and graphs...Part V: Natural language processing; large language model; time series and stream data...Part VI: Graph and network; hardware acceleration...Part VII: Emerging application; industry papers; demo papers..
出版日期Conference proceedings 2024
關(guān)鍵詞Cloud data management; Data mining and knowledge discovery; Data warehouse and OLAP; Databases for emer
版次1
doihttps://doi.org/10.1007/978-981-97-5572-1
isbn_softcover978-981-97-5571-4
isbn_ebook978-981-97-5572-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Database Systems for Advanced Applications影響因子(影響力)




書目名稱Database Systems for Advanced Applications影響因子(影響力)學(xué)科排名




書目名稱Database Systems for Advanced Applications網(wǎng)絡(luò)公開度




書目名稱Database Systems for Advanced Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Database Systems for Advanced Applications被引頻次




書目名稱Database Systems for Advanced Applications被引頻次學(xué)科排名




書目名稱Database Systems for Advanced Applications年度引用




書目名稱Database Systems for Advanced Applications年度引用學(xué)科排名




書目名稱Database Systems for Advanced Applications讀者反饋




書目名稱Database Systems for Advanced Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:17:28 | 只看該作者
Higher-Order Graph Contrastive Learning for?Recommendationom the original graph to enhance supervisory signals. Specifically, we construct two contrasting views: higher-order and general views. In the higher-order view, we devise a high-order symmetric contrastive scheme to better explore higher-order dependencies. For the general view, the objective is to
地板
發(fā)表于 2025-3-22 06:53:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:44:43 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:06 | 只看該作者
Multi-level Contrastive Learning on?Weak Social Networks for?Information Diffusion Predictionn.?To facilitate user representation learning under sparse labels?and insufficient features, we further propose self-supervised training specifically tailored for social networks with weak information.?In the second stage, the cascade representations are learned using?the multi-head self-attention n
7#
發(fā)表于 2025-3-22 17:17:11 | 只看該作者
BiasRec: A General Bias-Aware Social Recommendation Model initially constructs a bias matrix for each user and item, calculates bias scores, and removes them from the raw rating data. Subsequently, the debiased data is fed into a GNN to learn users’ genuine preferences. Last, it reasonably combines biases?and preferences to make predictions. We performed
8#
發(fā)表于 2025-3-23 01:01:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:28 | 只看該作者
10#
發(fā)表于 2025-3-23 09:09:00 | 只看該作者
Learning Social Graph for?Inactive User Recommendationring model training,?which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive?user recommendation. Our code is available at?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜章县| 桓仁| 湘潭县| 科技| 临洮县| 赣榆县| 大连市| 台前县| 田林县| 泸水县| 岫岩| 林西县| 白朗县| 嘉黎县| 奎屯市| 道孚县| 青神县| 盘山县| 桂阳县| 淮北市| 固安县| 洞头县| 南木林县| 三河市| 叙永县| 开封县| 洮南市| 高淳县| 榕江县| 光泽县| 珲春市| 县级市| 绵竹市| 虞城县| 阿尔山市| 徐汇区| 左权县| 鄱阳县| 石嘴山市| 桂林市| 银川市|