找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science in Engineering Vol. 10; Proceedings of the 4 Thomas Matarazzo,Fran?ois Hemez,Austin Downey Conference proceedings 2025 The Soc

[復(fù)制鏈接]
樓主: Lampoon
51#
發(fā)表于 2025-3-30 09:27:34 | 只看該作者
Optimal Modeling of Deep Groove Ball Bearings for Application in Multibody Dynamics Simulations, bearing model. The system’s response is examined by means of signal analysis as well as by using deep learning methods in order to characterize the health state of the system, thus proving the applicability of the present bearing modeling method for condition monitoring applications.
52#
發(fā)表于 2025-3-30 15:38:51 | 只看該作者
Utilization of Bridge Acceleration Response for Indirect Strain Sensing,h our novel approach, we can estimate strain with high accuracy from acceleration data and reconstruct rainflow cycle counting diagrams that can subsequently be used for bridge condition and life cycle assessment.
53#
發(fā)表于 2025-3-30 16:46:22 | 只看該作者
54#
發(fā)表于 2025-3-30 22:40:57 | 只看該作者
55#
發(fā)表于 2025-3-31 02:47:18 | 只看該作者
56#
發(fā)表于 2025-3-31 08:40:02 | 只看該作者
On the Use of Symbolic Regression for Population-Based Modelling of Structures,that of symbolic regression and the transfer is attempted between an extensively monitored structure and a data-poor structure for a regression application. The methodology is applied in a prognosis problem of crack growth in metal plates, and the results reveal the potential of symbolic regression
57#
發(fā)表于 2025-3-31 13:00:28 | 只看該作者
Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensi benefit that DAS does not suffer from time synchronization errors and remote power issues like traditional microphone arrays. This work investigates the performance of DAS when used to detect bird calls, with particular focus on the Great Horned Owl (GHO), an indicator species for prey vulnerabilit
58#
發(fā)表于 2025-3-31 13:55:37 | 只看該作者
59#
發(fā)表于 2025-3-31 19:06:48 | 只看該作者
Adaptive Radio Frequency Target Localization,blem as a Partially Observable Markov Decision Process (POMDP) and was solved through the use of particle filtering and reinforcement learning. The purpose of this work is to build upon this prior study by training a deep neural network in a simulated environment and applying inference in the real w
60#
發(fā)表于 2025-3-31 23:22:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥勒县| 文化| 延庆县| 大港区| 禹城市| 中西区| 福清市| 徐水县| 彰武县| 左权县| 城步| 米林县| 丁青县| 巨鹿县| 甘谷县| 师宗县| 灌阳县| 科技| 荥阳市| 邯郸县| 曲水县| 安仁县| 克东县| 天峻县| 泰和县| 剑河县| 乌拉特中旗| 木兰县| 庄浪县| 昌图县| 遂宁市| 永年县| 兴和县| 鹰潭市| 鄂托克旗| 北安市| 藁城市| 石景山区| 莱西市| 柘城县| 韶山市|