找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science in Engineering Vol. 10; Proceedings of the 4 Thomas Matarazzo,Fran?ois Hemez,Austin Downey Conference proceedings 2025 The Soc

[復(fù)制鏈接]
查看: 26697|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:57:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Science in Engineering Vol. 10
副標(biāo)題Proceedings of the 4
編輯Thomas Matarazzo,Fran?ois Hemez,Austin Downey
視頻videohttp://file.papertrans.cn/285/284452/284452.mp4
叢書名稱Conference Proceedings of the Society for Experimental Mechanics Series
圖書封面Titlebook: Data Science in Engineering Vol. 10; Proceedings of the 4 Thomas Matarazzo,Fran?ois Hemez,Austin Downey Conference proceedings 2025 The Soc
描述.Data Science in Engineering, Volume 10: Proceedings of the 42.nd. IMAC,. .A Conference and Exposition on Structural Dynamics, 2024, .the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering.? The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:.. .Novel Data-driven Analysis Methods. .Deep Learning Gaussian Process Analysis. .Real-time Video-based Analysis. .Applications to Nonlinear Dynamics and Damage Detection. .Data-driven System Prognostics..
出版日期Conference proceedings 2025
關(guān)鍵詞Conference Proceedings; Novel Data-driven Analysis Methods; Deep Learning Gaussian Process Analysis; Re
版次1
doihttps://doi.org/10.1007/978-3-031-68142-4
isbn_softcover978-3-031-68144-8
isbn_ebook978-3-031-68142-4Series ISSN 2191-5644 Series E-ISSN 2191-5652
issn_series 2191-5644
copyrightThe Society for Experimental Mechanics 2025
The information of publication is updating

書目名稱Data Science in Engineering Vol. 10影響因子(影響力)




書目名稱Data Science in Engineering Vol. 10影響因子(影響力)學(xué)科排名




書目名稱Data Science in Engineering Vol. 10網(wǎng)絡(luò)公開度




書目名稱Data Science in Engineering Vol. 10網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science in Engineering Vol. 10被引頻次




書目名稱Data Science in Engineering Vol. 10被引頻次學(xué)科排名




書目名稱Data Science in Engineering Vol. 10年度引用




書目名稱Data Science in Engineering Vol. 10年度引用學(xué)科排名




書目名稱Data Science in Engineering Vol. 10讀者反饋




書目名稱Data Science in Engineering Vol. 10讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:12 | 只看該作者
Statistical Evaluation of Machine Learning for Vibration Data,om large quantities of data collected under varying conditions to make predictions, such as detection, identification, and characterization. Current ML implementation consists of training a model for narrow, task-specific needs, such as training a neural network to detect the presence of structural
板凳
發(fā)表于 2025-3-22 02:16:28 | 只看該作者
地板
發(fā)表于 2025-3-22 06:19:11 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:41 | 只看該作者
Optimal Modeling of Deep Groove Ball Bearings for Application in Multibody Dynamics Simulations,e normal contact force between the rolling elements and the two bearing races are established, including the effects of raceway surface roughness. Various contact force models with different hysteresis damping formulations are examined in order to select the best suited for the application. The bear
6#
發(fā)表于 2025-3-22 16:38:50 | 只看該作者
Utilization of Bridge Acceleration Response for Indirect Strain Sensing,onse under daily traffic loading. However, deploying and maintaining strain sensors is costly and labor-intensive compared to acceleration sensors. To address this issue, we propose a neural network architecture that can perform indirect sensing by estimating strain from measured acceleration respon
7#
發(fā)表于 2025-3-22 19:25:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:04:17 | 只看該作者
Physics-Informed Machine Learning Part II: Applications in Structural Response Forecasting,interpretability of predictive models. By incorporating physical laws and constraints into the learning process, physics-informed machine learning enables more robust predictions and reduces the need for large amounts of training data. In part II of this two-part series, the authors present structur
9#
發(fā)表于 2025-3-23 05:03:15 | 只看該作者
10#
發(fā)表于 2025-3-23 07:28:59 | 只看該作者
Understanding High-Frequency Modes in Electromechanical Impedance Measurement Using Noncontact Vibr measurements are recorded via a bonded piezoelectric transducer, at a high-frequency range, typically 30 kHz and above. Because EMI measurements are single input single output, the peaks in these measurements can be related to either mechanical, electrical, or coupled electromechanical modes, espec
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永寿县| 尉氏县| 木兰县| 鹤壁市| 武城县| 桃源县| 宾川县| 定州市| 花垣县| 乐业县| 巍山| 乌兰察布市| 万全县| 乐平市| 什邡市| 青河县| 连南| 无锡市| 武乡县| 桃园县| 青河县| 乐陵市| 汽车| 黎平县| 新安县| 拜城县| 德州市| 永靖县| 安溪县| 武强县| 同仁县| 繁昌县| 寻甸| 莲花县| 兰考县| 长垣县| 卫辉市| 巫溪县| 方正县| 武清区| 枣强县|