找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:59:50 | 只看該作者
Célibes, Mothers, and Church Cockroaches results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
22#
發(fā)表于 2025-3-25 08:21:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:39 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:18 | 只看該作者
Working with the Impulsive Personwo principal novelties are in the basis of the research. The first one is that all coordinates of a solution are unpredictable functions. That is, solutions are .. Second, perturbations are . functions. Examples with numerical simulations are presented to illustrate the theoretical results. The resu
25#
發(fā)表于 2025-3-25 22:49:18 | 只看該作者
https://doi.org/10.1007/978-1-4684-3515-3amic equations on time scales by using the reduction technique to impulsive differential equations. The results are based on the Li–Yorke definition of chaos. An illustrative example is presented by means of a Duffing equation on a time scale.
26#
發(fā)表于 2025-3-26 03:45:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:40:04 | 只看該作者
28#
發(fā)表于 2025-3-26 08:29:17 | 只看該作者
29#
發(fā)表于 2025-3-26 16:12:27 | 只看該作者
Unpredictability in Bebutov Dynamics, results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
30#
發(fā)表于 2025-3-26 18:03:14 | 只看該作者
Unpredictable Solutions of Hyperbolic Linear Equations,e equations are investigated. The hyperbolic cases are under discussion. The presence of unpredictable solutions confirms the existence of Poincaré chaos. Simulations illustrating the chaos are provided. The results of this chapter are published in paper.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑川县| 麻阳| 昆山市| 竹溪县| 那曲县| 沙雅县| 潞城市| 扎赉特旗| 通化县| 出国| 察哈| 秀山| 镇康县| 汕尾市| 独山县| 内江市| 独山县| 嵊州市| 京山县| 东兰县| 甘德县| 曲阳县| 嘉兴市| 兴山县| 武夷山市| 武陟县| 上栗县| 石林| 海原县| 宿松县| 城市| 鲁山县| 东乌| 侯马市| 盐边县| 潞城市| 克拉玛依市| 上饶市| 澄城县| 开平市| 剑阁县|