找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復(fù)制鏈接]
查看: 52594|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:57:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamics with Chaos and Fractals
編輯Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily
視頻videohttp://file.papertrans.cn/285/284220/284220.mp4
概述Stands as the first book presenting theoretical background on the unpredictable point and mapping of fractals.Introduces the concepts of unpredictable functions, abstract self-similarity, and similari
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Dynamics with Chaos and Fractals;  Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a
描述.The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .
出版日期Book 2020
關(guān)鍵詞Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
版次1
doihttps://doi.org/10.1007/978-3-030-35854-9
isbn_softcover978-3-030-35856-3
isbn_ebook978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Dynamics with Chaos and Fractals影響因子(影響力)




書目名稱Dynamics with Chaos and Fractals影響因子(影響力)學(xué)科排名




書目名稱Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開度




書目名稱Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics with Chaos and Fractals被引頻次




書目名稱Dynamics with Chaos and Fractals被引頻次學(xué)科排名




書目名稱Dynamics with Chaos and Fractals年度引用




書目名稱Dynamics with Chaos and Fractals年度引用學(xué)科排名




書目名稱Dynamics with Chaos and Fractals讀者反饋




書目名稱Dynamics with Chaos and Fractals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:53 | 只看該作者
2195-9994 provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .978-3-030-35856-3978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
板凳
發(fā)表于 2025-3-22 02:18:14 | 只看該作者
https://doi.org/10.1007/978-3-030-35854-9Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
地板
發(fā)表于 2025-3-22 04:54:31 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:22 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:02 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:24 | 只看該作者
Nonlinear Unpredictable Perturbations,The results of this chapter are continuation of the research of Poincaré chaos initiated in Chaps. . and .. We focus on the construction of an unpredictable function, continuous on the real axis. This is the first time that perturbations depend nonlinearly on unpredictable functions.
9#
發(fā)表于 2025-3-23 05:10:03 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝南县| 寿宁县| 公安县| 辽宁省| 武城县| 鄂尔多斯市| 云南省| 枣庄市| 苍梧县| 肥东县| 梁平县| 柘荣县| 庆阳市| 大埔区| 安新县| 新营市| 顺昌县| 祁门县| 莎车县| 沙田区| 怀宁县| 涞水县| 邵东县| 迭部县| 沙洋县| 开封县| 清水河县| 双牌县| 永州市| 武川县| 交口县| 全州县| 元朗区| 长宁县| 古田县| 博乐市| 都匀市| 上思县| 博湖县| 新平| 庄河市|