找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復制鏈接]
樓主: 管玄樂團
21#
發(fā)表于 2025-3-25 05:59:50 | 只看該作者
Célibes, Mothers, and Church Cockroaches results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
22#
發(fā)表于 2025-3-25 08:21:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:39 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:18 | 只看該作者
Working with the Impulsive Personwo principal novelties are in the basis of the research. The first one is that all coordinates of a solution are unpredictable functions. That is, solutions are .. Second, perturbations are . functions. Examples with numerical simulations are presented to illustrate the theoretical results. The resu
25#
發(fā)表于 2025-3-25 22:49:18 | 只看該作者
https://doi.org/10.1007/978-1-4684-3515-3amic equations on time scales by using the reduction technique to impulsive differential equations. The results are based on the Li–Yorke definition of chaos. An illustrative example is presented by means of a Duffing equation on a time scale.
26#
發(fā)表于 2025-3-26 03:45:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:40:04 | 只看該作者
28#
發(fā)表于 2025-3-26 08:29:17 | 只看該作者
29#
發(fā)表于 2025-3-26 16:12:27 | 只看該作者
Unpredictability in Bebutov Dynamics, results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
30#
發(fā)表于 2025-3-26 18:03:14 | 只看該作者
Unpredictable Solutions of Hyperbolic Linear Equations,e equations are investigated. The hyperbolic cases are under discussion. The presence of unpredictable solutions confirms the existence of Poincaré chaos. Simulations illustrating the chaos are provided. The results of this chapter are published in paper.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
基隆市| 柳江县| 社会| 资溪县| 蕉岭县| 海伦市| 博兴县| 博爱县| 绥江县| 巴南区| 康定县| 望江县| 莎车县| 渝北区| 香港 | 芒康县| 梁平县| 清流县| 定日县| 农安县| 崇文区| 横峰县| 武义县| 德江县| 阿拉善左旗| 临江市| 清新县| 清水县| 闽侯县| 鄂州市| 扎囊县| 喀什市| 东丽区| 繁峙县| 依安县| 龙山县| 平南县| 三亚市| 信阳市| 天台县| 顺平县|