找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Nonlinear Time-Delay Systems; Muthusamy Lakshmanan,Dharmapuri Vijayan Senthilkum Book 2011 Springer Berlin Heidelberg 2011 cha

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:48:19 | 只看該作者
DTM Induced Oscillating Synchronization,be a serious drawback of the latter type of systems). It has been shown very recently that a distributed delay enriches the characteristic features of the delayed system over that of the fixed delay systems [2].
22#
發(fā)表于 2025-3-25 10:20:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:55 | 只看該作者
Exact Solutions of Certain Time Delay Systems: The Car-Following Models,r open boundary conditions, they admitshock-like solutions, representing the stationary propagation of a traffic jam [2, 3]. We will closely follow here the approach of Tutiya and Kanai [4] in the following discussion just to illustrate how exact solutions can arise in delay systems.
25#
發(fā)表于 2025-3-25 23:01:50 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:31 | 只看該作者
Meg Elis , (1975), , (1978) and , (1985)ications of chaos synchronization include secure communication, cryptography, controlling, long term prediction, optimization of nonlinear system performance, modelling brain activity, pattern recognition, and so on [1–18].
27#
發(fā)表于 2025-3-26 07:22:52 | 只看該作者
Bifurcation and Chaos in Time-Delayed Piecewise Linear Dynamical System, nature of transients and difficulties innumerical analysis as well as the frequent existence ofhyperchaotic attractors with multiple positive Lyapunov exponents. The dynamics of other nonlinear time-delay systems will be taken up in the next chapter.
28#
發(fā)表于 2025-3-26 12:24:48 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:56 | 只看該作者
0172-7389 resentation on scalar hyperchaotic (up to higher-order) time.Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, ti
30#
發(fā)表于 2025-3-26 20:38:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广平县| 清原| 秭归县| 扶绥县| 无为县| 曲阜市| 临武县| 营山县| 中卫市| 若尔盖县| 新民市| 迁安市| 巴南区| 黄山市| 鱼台县| 庆城县| 石河子市| 黑龙江省| 平安县| 盐池县| 洛阳市| 彩票| 饶河县| 溧水县| 碌曲县| 石门县| 怀宁县| 镇沅| 天镇县| 汕尾市| 温宿县| 北安市| 秦安县| 乡宁县| 巩义市| 巫山县| 罗城| 丹棱县| 太仓市| 邵阳市| 黎城县|