找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Nonlinear Time-Delay Systems; Muthusamy Lakshmanan,Dharmapuri Vijayan Senthilkum Book 2011 Springer Berlin Heidelberg 2011 cha

[復制鏈接]
查看: 26750|回復: 48
樓主
發(fā)表于 2025-3-21 17:22:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamics of Nonlinear Time-Delay Systems
編輯Muthusamy Lakshmanan,Dharmapuri Vijayan Senthilkum
視頻videohttp://file.papertrans.cn/285/284141/284141.mp4
概述Bridges a gap in the literature by providing an introduction to this specific subfield of chaotic dynamical systems.Unique in the thorough presentation on scalar hyperchaotic (up to higher-order) time
叢書名稱Springer Series in Synergetics
圖書封面Titlebook: Dynamics of Nonlinear Time-Delay Systems;  Muthusamy Lakshmanan,Dharmapuri Vijayan Senthilkum Book 2011 Springer Berlin Heidelberg 2011 cha
描述.Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly.suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite.switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant..This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics..Special attention is devoted to scalar chaotic/hyperchaotic time-delay.systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. .Last but not least, the presentation as a whole strives for a balance between the
出版日期Book 2011
關鍵詞chaotic dynamical systems; delay differential equations; delay feedback; electronic circuits; in complex
版次1
doihttps://doi.org/10.1007/978-3-642-14938-2
isbn_softcover978-3-642-26649-2
isbn_ebook978-3-642-14938-2Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer Berlin Heidelberg 2011
The information of publication is updating

書目名稱Dynamics of Nonlinear Time-Delay Systems影響因子(影響力)




書目名稱Dynamics of Nonlinear Time-Delay Systems影響因子(影響力)學科排名




書目名稱Dynamics of Nonlinear Time-Delay Systems網絡公開度




書目名稱Dynamics of Nonlinear Time-Delay Systems網絡公開度學科排名




書目名稱Dynamics of Nonlinear Time-Delay Systems被引頻次




書目名稱Dynamics of Nonlinear Time-Delay Systems被引頻次學科排名




書目名稱Dynamics of Nonlinear Time-Delay Systems年度引用




書目名稱Dynamics of Nonlinear Time-Delay Systems年度引用學科排名




書目名稱Dynamics of Nonlinear Time-Delay Systems讀者反饋




書目名稱Dynamics of Nonlinear Time-Delay Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:09:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:52:06 | 只看該作者
A Few Other Interesting Chaotic Delay Differential Equations,select different values (sufficiently large) for the delay time τ to generate high-dimensional chaotic signals. Hence, in recent times DDEs have received increased attention in the nonlinear dynamics literature due to the possibility of generating more complex and high-dimensional chaotic attractors
地板
發(fā)表于 2025-3-22 05:45:15 | 只看該作者
Implications of Delay Feedback: Amplitude Death and Other Effects,tion is physically justified and in all the cases it simplifies the mathematics. However, in recent times one has witnessed increased activities to investigate oscillator systems withdelay feedback and it has been proved that delay feedback is a veritable black box which can give rise to several int
5#
發(fā)表于 2025-3-22 09:27:47 | 只看該作者
Recent Developments on Delay Feedback/Coupling: Complex Networks, Chimeras, Globally Clustered Chimnted out in earlier chapters. The study of time-delay induced modifications in the collective behavior of systems of coupled nonlinear oscillators is a topic of much current interest both for its fundamental significance from a dynamical systems point of view and for its practical applications.
6#
發(fā)表于 2025-3-22 13:10:15 | 只看該作者
Complete Synchronization of Chaotic Oscillations in Coupled Time-Delay Systems,dulum clocks, hanging from the same beam, becomeanti-phase synchronized [1]. Since the early identification of synchronization in coupled chaotic oscillators [2–4], the phenomenon has attracted considerable research activity in different areas of science, and several generalizations and interesting
7#
發(fā)表于 2025-3-22 18:16:17 | 只看該作者
Transition from Anticipatory to Lag Synchronization via Complete Synchronization,tional coupling between them and having two different time-delays: one in the coupling term and the other in the individual systems, namely feedback delay. We deduce [1] the corresponding stability condition for synchronization following Krasovskii-Lyapunov theory as in the previous chapter for comp
8#
發(fā)表于 2025-3-22 21:27:11 | 只看該作者
Intermittency Transition to Generalized Synchronization,ually introduced in [1]. Generalized synchronization is observed in coupled nonidentical systems, where there exists some functional relationship between the drive . and the response . systems, that is, .. With GS, all the response systems coupled to the drive lose their intrinsic chaoticity (sensit
9#
發(fā)表于 2025-3-23 01:27:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:41 | 只看該作者
DTM Induced Oscillating Synchronization,ion of time. The notion oftime dependent delay (TDD) withstochastic orchaotic modulation in time-delay systems was introduced by Kye et al. [1] to understand the behaviour of dynamical systems with time dependent topology. They have reported that in a time-delay system with TDD, the reconstructedpha
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 03:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新乡市| 伊川县| 苏尼特左旗| 清远市| 石楼县| 贺兰县| 修水县| 社旗县| 卓资县| 永定县| 台南市| 和龙市| 收藏| 富锦市| 安溪县| 永新县| 桂平市| 安福县| 文成县| 新巴尔虎右旗| 江城| 惠东县| 象州县| 繁昌县| 迁安市| 桑植县| 天长市| 黄平县| 依兰县| 武川县| 林芝县| 沅陵县| 高平市| 璧山县| 大石桥市| 伊通| 睢宁县| 桓台县| 河东区| 新乡县| 怀化市|