找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps; A Functional Approac Viviane Baladi Book 2018 Springer Internation

[復制鏈接]
樓主: 呻吟
21#
發(fā)表于 2025-3-25 06:50:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:44 | 只看該作者
Dynamical determinants for smooth hyperbolic dynamicseighted dynamical determinant, giving a lower bound on the disc in which this determinant is analytic and where its zeroes admit a spectral interpretation. We apply the results obtained on the weighted dynamical determinant to study the dynamical zeta function.
23#
發(fā)表于 2025-3-25 14:01:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:51:57 | 只看該作者
ZinnThis chapter describes a third scale of anisotropic Banach spaces of distributions, for which the best known bounds on the essential spectral radius of the transfer operator are known, improving those given in Chapter 4. The last section implements the Gou?zel-Keller-Liverani perturbation theory for this third type of Banach spaces.
25#
發(fā)表于 2025-3-25 20:09:07 | 只看該作者
A variational formula for the essential spectral radiusThis chapter describes a third scale of anisotropic Banach spaces of distributions, for which the best known bounds on the essential spectral radius of the transfer operator are known, improving those given in Chapter 4. The last section implements the Gou?zel-Keller-Liverani perturbation theory for this third type of Banach spaces.
26#
發(fā)表于 2025-3-26 01:43:20 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:54 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematihttp://image.papertrans.cn/e/image/283915.jpg
28#
發(fā)表于 2025-3-26 11:06:04 | 只看該作者
Manganmics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
29#
發(fā)表于 2025-3-26 13:26:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:57:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
雷波县| 镶黄旗| 格尔木市| 友谊县| 临安市| 册亨县| 方正县| 津南区| 赣榆县| 建阳市| 九龙县| 丹巴县| 莱芜市| 克拉玛依市| 绍兴县| 白城市| 高邑县| 桐梓县| 广昌县| 双辽市| 孝昌县| 义马市| 梨树县| 襄樊市| 桦南县| 泾川县| 临邑县| 克拉玛依市| 武鸣县| 山西省| 鄢陵县| 兴隆县| 新干县| 西宁市| 登封市| 横山县| 陵水| 凌源市| 海盐县| 常州市| 炎陵县|