找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps; A Functional Approac Viviane Baladi Book 2018 Springer Internation

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:39:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:04 | 只看該作者
Manganmics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
13#
發(fā)表于 2025-3-23 20:04:28 | 只看該作者
14#
發(fā)表于 2025-3-24 01:46:44 | 只看該作者
Chromphism on a hyperbolic basic set and a differentiable weight function. The operator acts on two scales of anisotropic spaces of distributions on the manifold defined using cones (in the cotangent space) adapted to the diffeomorphism.
15#
發(fā)表于 2025-3-24 03:01:10 | 只看該作者
Zinneighted dynamical determinant, giving a lower bound on the disc in which this determinant is analytic and where its zeroes admit a spectral interpretation. We apply the results obtained on the weighted dynamical determinant to study the dynamical zeta function.
16#
發(fā)表于 2025-3-24 08:50:12 | 只看該作者
Wolfram SRB measures, in the spirit of the work of Gou?zel-Liverani, recovering classical results of existence, uniqueness, and exponential mixing. Then we present Tsujii’s unpublished proof of Anosov’s theorem using anisotropic spaces.
17#
發(fā)表于 2025-3-24 11:31:52 | 只看該作者
https://doi.org/10.1007/978-3-319-77661-3dynamical zeta functions; Ruelle transfer operators; Anosov diffeomorphisms; anisotropic Banach Spaces;
18#
發(fā)表于 2025-3-24 17:20:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:09 | 只看該作者
Smooth expanding maps: The spectrum of the transfer operatormics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
20#
發(fā)表于 2025-3-25 03:00:14 | 只看該作者
Smooth expanding maps: Dynamical determinantspanding dynamics and weights. The proof uses the Milnor-Thurston kneading operator approach. The contents of this chapter are a blueprint for the technically more involved situation of hyperbolic dynamics and the corresponding anisotropic Banach spaces in Part II.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 贺兰县| 平乡县| 梁河县| 融水| 冀州市| 汶上县| 县级市| 沁水县| 泰来县| 长子县| 辽宁省| 周宁县| 江阴市| 莲花县| 彩票| 永济市| 花莲市| 三河市| 永德县| 瑞金市| 屏东县| 汨罗市| 绥棱县| 眉山市| 古田县| 监利县| 页游| 华容县| 洛隆县| 睢宁县| 永丰县| 虞城县| 民丰县| 靖宇县| 潮州市| 彭山县| 洛扎县| 项城市| 承德县| 榆树市|