找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Moduli Schemes and Automorphic Forms; The Theory of Ellipt Yuval Z. Flicker Book 2013 Yuval Z. Flicker 2013 Drinfield modules.Galo

[復(fù)制鏈接]
樓主: Monsoon
11#
發(fā)表于 2025-3-23 10:00:14 | 只看該作者
Purity Theorement, namely that all unramified components of such a π are tempered, namely that all of their Hecke eigenvalues have absolute value one. This is deduced from a form of the trace formula of Arthur, as well as the theory of elliptic modules developed above, Deligne’s purity of the action of the Froben
12#
發(fā)表于 2025-3-23 14:57:08 | 只看該作者
13#
發(fā)表于 2025-3-23 19:16:35 | 只看該作者
Representations of a Weil Group ., . = .(.), and . a fixed place of ., as in Chap. 2. This section concerns the higher reciprocity law, which parametrizes the cuspidal .-modules whose component at . is cuspidal, by irreducible continuous constructible .-dimensional .-adic (.≠.) representations of the Weil group ., or irreducible
14#
發(fā)表于 2025-3-23 22:51:19 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:45 | 只看該作者
Lagrangian Formulation of General Relativityule, over .. Then π is the restricted direct product . over all places . of . of irreducible admissible .. = .(..)-modules π.. For almost all . the component π. is unramified. In this case there are nonzero complex numbers ., uniquely determined up to order by π. and called the . of π., with the fol
16#
發(fā)表于 2025-3-24 06:45:17 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:43:15 | 只看該作者
Mark Bennister,Ben Worthy,Dan Keithrs and the Galois group on them. This is a rather selective summary, and not a complete exposition. For an introductory textbook to the subject see. The shorter exposition of , Arcata, Rapport, is very useful, and so are the fundamental results of SGA, Exp. XVII, XVIII, and SGA, Exp. III.
19#
發(fā)表于 2025-3-24 21:58:26 | 只看該作者
https://doi.org/10.1007/978-3-319-53441-1 comparison we need to describe the arithmetic data, which is the cardinality of the set of points on the fiber .. at . of the moduli scheme .., over finite field extensions of ., or, equivalently, the set . with the action of the Frobenius morphism on it, by group theoretic data which appears in th
20#
發(fā)表于 2025-3-24 23:53:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴和县| 资源县| 黄石市| 松江区| 海晏县| 广德县| 蒙山县| 建水县| 泾川县| 双流县| 资溪县| 通化县| 巴林右旗| 饶河县| 旅游| 汝城县| 库尔勒市| 阳东县| 岳普湖县| 安泽县| 保靖县| 蒙自县| 江源县| 集贤县| 文成县| 沅江市| 延安市| 乡宁县| 深州市| 巴林右旗| 盖州市| 全椒县| 昌乐县| 郴州市| 安福县| 建湖县| 怀仁县| 宜章县| 宜兴市| 雅安市| 桂阳县|