找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Moduli Schemes and Automorphic Forms; The Theory of Ellipt Yuval Z. Flicker Book 2013 Yuval Z. Flicker 2013 Drinfield modules.Galo

[復(fù)制鏈接]
查看: 16789|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:17:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms
副標(biāo)題The Theory of Ellipt
編輯Yuval Z. Flicker
視頻videohttp://file.papertrans.cn/283/282869/282869.mp4
概述Provides a ?quick introduction to the Langlands correspondence for function fields via the cohomology of Drinfield moduli varieties.Complete exposition of the theory of elliptic modules, their moduli
叢書(shū)名稱(chēng)SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: Drinfeld Moduli Schemes and Automorphic Forms; The Theory of Ellipt Yuval Z. Flicker Book 2013 Yuval Z. Flicker 2013 Drinfield modules.Galo
描述.Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications. is based on the author’s original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and,?in the global case, under a restriction at a single place. It develops Drinfeld’s theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple"?converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The?Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an?entrance to this fascinating area of mathematics.
出版日期Book 2013
關(guān)鍵詞Drinfield modules; Galois representations; Ramanujan conjecture; cuspidal representations; elliptic modu
版次1
doihttps://doi.org/10.1007/978-1-4614-5888-3
isbn_softcover978-1-4614-5887-6
isbn_ebook978-1-4614-5888-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightYuval Z. Flicker 2013
The information of publication is updating

書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms影響因子(影響力)




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms被引頻次




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms被引頻次學(xué)科排名




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms年度引用




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms年度引用學(xué)科排名




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms讀者反饋




書(shū)目名稱(chēng)Drinfeld Moduli Schemes and Automorphic Forms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:51 | 只看該作者
Representations of a Weil Groupd Laumon (Publ Math IHES 65:131–210, 1987). We explain the result twice. A preliminary exposition in the classical language of representations of the Weil group, then in the equivalent language of smooth .-adic sheaves, used e.g. in (Deligne and Flicker, Counting local systems with principal unipote
板凳
發(fā)表于 2025-3-22 03:33:18 | 只看該作者
Book 2013d and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an?entrance to this fascinating area of mathematics.
地板
發(fā)表于 2025-3-22 07:35:16 | 只看該作者
Axially Symmetric Non-similar Flowsd Laumon (Publ Math IHES 65:131–210, 1987). We explain the result twice. A preliminary exposition in the classical language of representations of the Weil group, then in the equivalent language of smooth .-adic sheaves, used e.g. in (Deligne and Flicker, Counting local systems with principal unipote
5#
發(fā)表于 2025-3-22 10:56:32 | 只看該作者
6#
發(fā)表于 2025-3-22 13:11:52 | 只看該作者
Elliptic Modules: Analytic Definition. the function field . of . over ., that is, the field of rational functions on . over .. At each place . of ., namely a closed point of ., let .. be the completion of . at . and .. the ring of integers in ... Fix a place . of .. Let .. be the completion of an algebraic closure . of ...
7#
發(fā)表于 2025-3-22 19:23:41 | 只看該作者
Elliptic Modules: Geometric Definition, that is, the scheme ., is replaced by an arbitrary scheme . over . and . is replaced by an invertible (locally free rank one) sheaf . over . (equivalently a line bundle over .). An elliptic module of rank . over . will then be defined as an .?structure on . which becomes an elliptic module of rank
8#
發(fā)表于 2025-3-22 21:29:04 | 只看該作者
Deligne’s Conjecture and Congruence Relationsrs and the Galois group on them. This is a rather selective summary, and not a complete exposition. For an introductory textbook to the subject see. The shorter exposition of , Arcata, Rapport, is very useful, and so are the fundamental results of SGA, Exp. XVII, XVIII, and SGA, Exp. III.
9#
發(fā)表于 2025-3-23 02:22:54 | 只看該作者
Isogeny Classes comparison we need to describe the arithmetic data, which is the cardinality of the set of points on the fiber .. at . of the moduli scheme .., over finite field extensions of ., or, equivalently, the set . with the action of the Frobenius morphism on it, by group theoretic data which appears in th
10#
發(fā)表于 2025-3-23 09:00:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿尔山市| 大足县| 滦南县| 祁阳县| 虹口区| 汉中市| 泗洪县| 肇源县| 呈贡县| 泸定县| 区。| 思茅市| 南涧| 盈江县| 武宣县| 大埔县| 海安县| 新竹县| 叙永县| 兴城市| 江华| 铅山县| 漾濞| 涡阳县| 西藏| 逊克县| 景洪市| 松原市| 洱源县| 古田县| 平泉县| 金寨县| 东方市| 贺兰县| 吴忠市| 广河县| 兴隆县| 游戏| 开原市| 罗山县| 屯昌县|