找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 04:52:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:05 | 只看該作者
Algebraic Preliminaries,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
23#
發(fā)表于 2025-3-25 12:42:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:17:23 | 只看該作者
Basic Properties of Drinfeld Modules, . acts via certain linearized polynomials in .[.]. In this chapter, we study the basic properties of Drinfeld modules which are valid over arbitrary fields. Later in the book we will be interested in the properties of Drinfeld modules defined over arithmetically interesting fields, such as finite f
25#
發(fā)表于 2025-3-25 20:13:23 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:37 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huangsome basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass factorization theorem, and the existence and distribution of zeros of entire functions.
28#
發(fā)表于 2025-3-26 09:30:00 | 只看該作者
Textbook 2023irst two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic
29#
發(fā)表于 2025-3-26 16:20:27 | 只看該作者
30#
發(fā)表于 2025-3-26 18:26:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁源县| 南丰县| 武鸣县| 喀喇| 开封市| 拉萨市| 惠来县| 中西区| 砀山县| 望谟县| 文水县| 石棉县| 沈阳市| 西林县| 礼泉县| 磐安县| 若尔盖县| 神农架林区| 孝义市| 黑河市| 耒阳市| 佛山市| 固始县| 垫江县| 绥德县| 称多县| 广西| 历史| 松溪县| 牟定县| 亳州市| 清丰县| 郁南县| 山阴县| 吐鲁番市| 谢通门县| 观塘区| 阳朔县| 广宗县| 白水县| 阿拉尔市|