找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
樓主: 游牧
11#
發(fā)表于 2025-3-23 10:39:25 | 只看該作者
Optimal Damping of Random Excited SystemsIn this chapter we study Drinfeld modules defined over a field . which is complete with respect to a discrete valuation.
12#
發(fā)表于 2025-3-23 16:25:32 | 只看該作者
Dynamical Modelling of Vehicle’s ManeuveringLet . be a finite extension of ., considered as an .-field via the natural embeddings.
13#
發(fā)表于 2025-3-23 20:21:39 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:40 | 只看該作者
Drinfeld Modules over Local Fields,In this chapter we study Drinfeld modules defined over a field . which is complete with respect to a discrete valuation.
15#
發(fā)表于 2025-3-24 05:12:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:58 | 只看該作者
https://doi.org/10.1007/978-3-031-19707-9Drinfield modules; Function field arithmetic; Finite fields and linearized polynomials; Non-archimedean
17#
發(fā)表于 2025-3-24 11:04:15 | 只看該作者
978-3-031-19709-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
18#
發(fā)表于 2025-3-24 16:05:42 | 只看該作者
Introduction to Visual Attributes,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
19#
發(fā)表于 2025-3-24 19:35:22 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huanglemma, the Newton polygon method, extensions of local fields, ramification, and valuations and completions of global function fields. We also discuss some basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass
20#
發(fā)表于 2025-3-25 02:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广饶县| 聂拉木县| 许昌市| 大方县| 揭西县| 平邑县| 萍乡市| 普陀区| 英吉沙县| 绍兴市| 饶河县| 佛学| 肇东市| 肃宁县| 崇文区| 岐山县| 福鼎市| 屏东县| 旬邑县| 泗阳县| 新竹市| 镇宁| 吴旗县| 沂南县| 元江| 永福县| 连城县| 道孚县| 包头市| 南雄市| 达尔| 德兴市| 夹江县| 札达县| 汾西县| 抚州市| 兴山县| 盈江县| 娄烦县| 德兴市| 嘉荫县|