找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto

[復(fù)制鏈接]
樓主: 誤解
21#
發(fā)表于 2025-3-25 06:50:44 | 只看該作者
CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT delay phase dynamic CT liver scans, filtering out anything else, including other types of liver contrast studies. To exploit as much training data as possible, we also introduce an aggregated cross entropy loss that can learn from scans only identified as “contrast”. Extensive experiments on a data
22#
發(fā)表于 2025-3-25 11:28:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:42:38 | 只看該作者
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and ImperfFirst MICCAI Worksho
24#
發(fā)表于 2025-3-25 16:16:56 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:46 | 只看該作者
Temporal Consistency Objectives Regularize the Learning of Disentangled Representations require explainability, whilst relying less on annotated data (since annotations can be tedious and costly). Here we build on recent innovations in style-content representations to learn anatomy, imaging characteristics (appearance) and temporal correlations. By introducing a self-supervised object
26#
發(fā)表于 2025-3-26 02:50:16 | 只看該作者
Multi-layer Domain Adaptation for Deep Convolutional Networksurthermore, the performance is not guaranteed on a sample from an unseen domain at test time, if the network was not exposed to similar samples from that domain at training time. This hinders the adoption of these techniques in clinical setting where the imaging data is scarce, and where the intra-
27#
發(fā)表于 2025-3-26 07:06:11 | 只看該作者
Intramodality Domain Adaptation Using Self Ensembling and Adversarial Trainingades drastically if the test data is from a domain different from training data. In this paper, we present and evaluate a novel unsupervised domain adaptation (DA) framework for semantic segmentation which uses self ensembling and adversarial training methods to effectively tackle domain shift betwe
28#
發(fā)表于 2025-3-26 10:34:21 | 只看該作者
29#
發(fā)表于 2025-3-26 14:00:34 | 只看該作者
Synthesising Images and Labels Between MR Sequence Types with CycleGANubjects unable to hold the breath or suffering from arrhythmia. RT image acquisitions during free breathing produce comparatively poor quality images, a trade-off necessary to achieve the high temporal resolution needed for RT imaging and hence are less suitable in the clinical assessment of cardiac
30#
發(fā)表于 2025-3-26 17:49:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 泾源县| 浦北县| 外汇| 武威市| 界首市| 岳普湖县| 咸丰县| 静安区| 龙游县| 库伦旗| 临安市| 定陶县| 南陵县| 手机| 宣汉县| 郎溪县| 渝中区| 当阳市| 南陵县| 商都县| 山丹县| 乌鲁木齐市| 宾阳县| 城固县| 虞城县| 通河县| 萨嘎县| 大余县| 浦北县| 平罗县| 建平县| 濮阳县| 平远县| 涪陵区| 花垣县| 井研县| 大邑县| 芦溪县| 宝应县| 仙游县|