找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto

[復(fù)制鏈接]
查看: 6966|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:34:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf
副標(biāo)題First MICCAI Worksho
編輯Qian Wang,Fausto Milletari,Ngan Le
視頻videohttp://file.papertrans.cn/283/282482/282482.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto
描述.This book constitutes the refereed proceedings of the First MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the First International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. ..DART 2019 accepted 12 papers for publication out of 18 submissions. The papers deal with methodological advancements and ideas that can improve the applicability of machine learning and deep learning approaches to clinical settings by making them robust and consistent across different domains. ..MIL3ID accepted 16 papers out of 43 submissions for publication, dealing with best practices in medical image learning with label scarcity and data imperfection.?.
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; ct image; image analysis; image reconstruction; image segmentation; imaging syst
版次1
doihttps://doi.org/10.1007/978-3-030-33391-1
isbn_softcover978-3-030-33390-4
isbn_ebook978-3-030-33391-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf影響因子(影響力)




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf影響因子(影響力)學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf被引頻次




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf被引頻次學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf年度引用




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf年度引用學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf讀者反饋




書目名稱Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:56 | 只看該作者
Exploration of Legitimacy in East Asiao existing state-of-the-art networks with and without domain adaptation. Depending on the application, our method can improve multi-class classification accuracy by 5–20% compared to DANN introduced in [.].
板凳
發(fā)表于 2025-3-22 01:55:07 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:53 | 只看該作者
Matthew D. Ostroff,Mark W. Connolly mechanism and dropout, while it does not increase parameters and computational costs, making it well-suited for small neuroimaging datasets. We evaluated our method on a challenging Traumatic Brain Injury (TBI) dataset collected from 13 sites, using labeled source data of only 14 . subjects. Experi
6#
發(fā)表于 2025-3-22 15:59:34 | 只看該作者
Matthew D. Ostroff,Mark W. Connollyi-modal MRI samples with expert-derived lesion labels. We explore several transfer learning approaches to leverage the learned MS model for the task of multi-class brain tumor segmentation on the BraTS 2018 dataset. Our results indicate that adapting and fine-tuning the encoder and decoder of the ne
7#
發(fā)表于 2025-3-22 18:43:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:54:57 | 只看該作者
Urban Living Lab for Local Regenerationhe public lumbar CT dataset. On the first dataset, WISS achieves distinct improvements with regard to two different backbones. For the second dataset, WISS achieves dice coefficients of . and . for mid-sagittal slices and 3D CT volumes, respectively, saving a lot of labeling costs and only sacrifici
9#
發(fā)表于 2025-3-23 02:42:07 | 只看該作者
https://doi.org/10.1007/978-3-031-19748-2patial attention and channel attention blocks for capturing the high-level feature map’s long-range dependencies and helps to synthesize a more semantic-consistent feature map, and thereby boosting weakly-supervised lesion localization and classification performance; Secondly, a multi-channel dilate
10#
發(fā)表于 2025-3-23 06:04:44 | 只看該作者
Urban Living Lab for Local Regeneration delay phase dynamic CT liver scans, filtering out anything else, including other types of liver contrast studies. To exploit as much training data as possible, we also introduce an aggregated cross entropy loss that can learn from scans only identified as “contrast”. Extensive experiments on a data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 科技| 田阳县| 玛曲县| 沙湾县| 汉源县| 开鲁县| 五莲县| 玛沁县| 家居| 浪卡子县| 黑龙江省| 胶南市| 蒙自县| 纳雍县| 禄劝| 饶阳县| 东兴市| 平潭县| 广饶县| 宜兴市| 灯塔市| 林西县| 葵青区| 集安市| 健康| 宁南县| 休宁县| 临城县| 礼泉县| 安福县| 黄大仙区| 临颍县| 定兴县| 汉寿县| 旬阳县| 准格尔旗| 华容县| 改则县| 东光县| 太原市|