找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 12:34:41 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:34 | 只看該作者
Temporal Consistency Objectives Regularize the Learning of Disentangled Representationsrove semi-supervised segmentation, especially when very few labelled data are available. Specifically, we show Dice increase of up?to 19% and 7% compared to supervised and semi-supervised approaches respectively on the ACDC dataset. Code is available at: ..
13#
發(fā)表于 2025-3-23 20:03:03 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:18 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:43 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:00 | 只看該作者
Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site T mechanism and dropout, while it does not increase parameters and computational costs, making it well-suited for small neuroimaging datasets. We evaluated our method on a challenging Traumatic Brain Injury (TBI) dataset collected from 13 sites, using labeled source data of only 14 . subjects. Experi
17#
發(fā)表于 2025-3-24 12:39:30 | 只看該作者
Improving Pathological Structure Segmentation via Transfer Learning Across Diseasesi-modal MRI samples with expert-derived lesion labels. We explore several transfer learning approaches to leverage the learned MS model for the task of multi-class brain tumor segmentation on the BraTS 2018 dataset. Our results indicate that adapting and fine-tuning the encoder and decoder of the ne
18#
發(fā)表于 2025-3-24 17:01:48 | 只看該作者
Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performancons. We also compared the localization and classification performance with and without image augmentation by using generated VIC images. Our results show that the model trained on IC and VIC images had the highest performance in both localization and classification. Therefore, VIC images are useful
19#
發(fā)表于 2025-3-24 21:46:56 | 只看該作者
Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagationhe public lumbar CT dataset. On the first dataset, WISS achieves distinct improvements with regard to two different backbones. For the second dataset, WISS achieves dice coefficients of . and . for mid-sagittal slices and 3D CT volumes, respectively, saving a lot of labeling costs and only sacrifici
20#
發(fā)表于 2025-3-24 23:45:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 无为县| 万全县| 福清市| 苍南县| 舞阳县| 浪卡子县| 屏东市| 永修县| 宜城市| 亳州市| 涪陵区| 荆州市| 镶黄旗| 个旧市| 罗城| 色达县| 尤溪县| 安国市| 江油市| 唐河县| 贡嘎县| 嫩江县| 辽宁省| 贞丰县| 柏乡县| 东明县| 沽源县| 赤壁市| 盐山县| 远安县| 南丰县| 亳州市| 桓台县| 邢台市| 尤溪县| 和林格尔县| 巢湖市| 仙桃市| 昌黎县| 含山县|