找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復制鏈接]
樓主: 畸齒矯正學
41#
發(fā)表于 2025-3-28 15:39:25 | 只看該作者
SynthTIGER: Synthetic Text Image GEneratoR Towards Better Text Recognition Models the combination of synthetic datasets, MJSynth (MJ) and SynthText (ST). Our ablation study demonstrates the benefits of using sub-components of SynthTIGER and the guideline on generating synthetic text images for STR models. Our implementation is publicly available at ..
42#
發(fā)表于 2025-3-28 19:28:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:17:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:05:06 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:14 | 只看該作者
46#
發(fā)表于 2025-3-29 14:08:49 | 只看該作者
47#
發(fā)表于 2025-3-29 19:27:55 | 只看該作者
Fast Text vs. Non-text Classification of Imagess, as encountered in social networks, for detection and recognition of scene text. The proposed classifier efficiently removes non-text images from consideration, thus allowing to apply the potentially computationally heavy scene text detection and OCR on only a fraction of the images..The proposed
48#
發(fā)表于 2025-3-29 22:33:33 | 只看該作者
Mask Scene Text Recognizer a supervised learning task of predicting text image mask into a CNN (convolutional neural network)-Transformer framework for scene text recognition. The incorporated mask predicting branch is connected in parallel with the CNN backbone, and the predicted mask is used as attention weights for the fe
49#
發(fā)表于 2025-3-30 03:29:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:04:55 | 只看該作者
Heterogeneous Network Based Semi-supervised Learning for Scene Text?Recognitionbased on abundant labeled data for model training. Obtaining text images is a relatively easy process, but labeling them is quite expensive. To alleviate the dependence on labeled data, semi-supervised learning which combines labeled and unlabeled data seems to be a reasonable solution, and is prove
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
微山县| 尼玛县| 通许县| 子长县| 德江县| 历史| 含山县| 陕西省| 乌恰县| 新密市| 临高县| 乐至县| 周至县| 佛坪县| 亚东县| 东城区| 鸡泽县| 西盟| 墨玉县| 博客| 吴川市| 兴国县| 蚌埠市| 北辰区| 四川省| 克山县| 横山县| 滨海县| 安多县| 循化| 上蔡县| 石嘴山市| 中牟县| 利津县| 景洪市| 延庆县| 珲春市| 兴业县| 镇雄县| 开江县| 木兰县|