找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
查看: 50910|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:17:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Document Analysis and Recognition – ICDAR 2021
副標(biāo)題16th International C
編輯Josep Lladós,Daniel Lopresti,Seiichi Uchida
視頻videohttp://file.papertrans.cn/283/282313/282313.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202
描述.This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16.th. International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021.?The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports..The papers are organized into the following topical sections: scene text detection and recognition, document classification, gold-standard benchmarks and data sets, historical document analysis, and handwriting recognition. In addition, the volume contains results of 13 scientific competitions held during ICDAR 2021..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; character recognition; computational linguistics; computer science; computer sy
版次1
doihttps://doi.org/10.1007/978-3-030-86337-1
isbn_softcover978-3-030-86336-4
isbn_ebook978-3-030-86337-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)




書目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開度




書目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021被引頻次




書目名稱Document Analysis and Recognition – ICDAR 2021被引頻次學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021年度引用




書目名稱Document Analysis and Recognition – ICDAR 2021年度引用學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋




書目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:08 | 只看該作者
Document Analysis and Recognition – ICDAR 2021978-3-030-86337-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 04:29:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:31:52 | 只看該作者
Theranostics for Breast Cancer Stem Cellss, as encountered in social networks, for detection and recognition of scene text. The proposed classifier efficiently removes non-text images from consideration, thus allowing to apply the potentially computationally heavy scene text detection and OCR on only a fraction of the images..The proposed
5#
發(fā)表于 2025-3-22 12:47:44 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:07 | 只看該作者
Translational Medicine Researchifficult to use rectangular bounding boxes to detect text locations accurately. To detect multi-oriented text, rotated bounding box-based methods have been explored as an alternative. However, they are not as accurate for scene text detection as rectangular bounding box-based methods. In this paper,
7#
發(fā)表于 2025-3-22 20:48:35 | 只看該作者
Translational Research in Strokebased on abundant labeled data for model training. Obtaining text images is a relatively easy process, but labeling them is quite expensive. To alleviate the dependence on labeled data, semi-supervised learning which combines labeled and unlabeled data seems to be a reasonable solution, and is prove
8#
發(fā)表于 2025-3-23 00:03:34 | 只看該作者
9#
發(fā)表于 2025-3-23 01:22:17 | 只看該作者
10#
發(fā)表于 2025-3-23 07:59:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博爱县| 嘉义县| 嘉禾县| 岚皋县| 昆山市| 诸城市| 太保市| 泾源县| 夹江县| 兴宁市| 涡阳县| 镇巴县| 佛坪县| 聊城市| 寿宁县| SHOW| 武城县| 西城区| 隆子县| 惠东县| 呼图壁县| 常州市| 商城县| 喜德县| 甘谷县| 通辽市| 萍乡市| 永州市| 盐池县| 镇沅| 浦东新区| 北碚区| 石林| 桦川县| 丽水市| 莱州市| 黎平县| 大厂| 拉孜县| 南雄市| 武宣县|