找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry; Volker Mayer,Mariusz Urbanski,Bartlomi

[復制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 12:36:27 | 只看該作者
Expanding in the Mean, also hold for a class of random maps satisfying an allegedly weaker expanding condition . We start with a precise definition of this class. Then we explain how this case can be reduced to random expanding maps by looking at an appropriate induced map. The picture is completed by providing and discu
12#
發(fā)表于 2025-3-23 14:41:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:48:44 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:56 | 只看該作者
Volker Mayer,Mariusz Urbanski,Bartlomiej SkorulskiContains new results.Complete treatment of the topic.Originality of the topic.Includes supplementary material:
15#
發(fā)表于 2025-3-24 04:15:19 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/281664.jpg
16#
發(fā)表于 2025-3-24 09:45:28 | 只看該作者
The RPF-Theorem,thout any measurable structure on the space .. In particular, we do not address measurability issues of λ. and ... In order to obtain this measurability we will need and we will impose a natural measurable structure on the space .. This will be done in the next chapter.
17#
發(fā)表于 2025-3-24 11:07:52 | 只看該作者
Real Analyticity of Pressure,6.3). We putted this part at the end of the manuscript since, as already mentioned, it is of different nature. It is heavily based on ideas of Rugh [26] and uses the Hilbert metric on appropriately chosen cones.
18#
發(fā)表于 2025-3-24 15:44:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:14:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
托里县| 滨海县| 涟水县| 荔浦县| 广宗县| 柏乡县| 龙海市| 阿拉善左旗| 扶余县| 瑞丽市| 临沭县| 都安| 兰考县| 朔州市| 乃东县| 临江市| 枣庄市| 南丹县| 正蓝旗| 闸北区| 潜江市| 西宁市| 乌兰浩特市| 双牌县| 怀来县| 南涧| 乌兰察布市| 格尔木市| 西乡县| 旬阳县| 四会市| 延边| 泾阳县| 遵义市| 五指山市| 溧水县| 岚皋县| 徐州市| 建始县| 太仆寺旗| 夹江县|