找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry; Volker Mayer,Mariusz Urbanski,Bartlomi

[復(fù)制鏈接]
查看: 40045|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:16:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry
編輯Volker Mayer,Mariusz Urbanski,Bartlomiej Skorulski
視頻videohttp://file.papertrans.cn/282/281664/281664.mp4
概述Contains new results.Complete treatment of the topic.Originality of the topic.Includes supplementary material:
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry;  Volker Mayer,Mariusz Urbanski,Bartlomi
描述.The theory of random dynamical systems originated from stochastic.differential equations. It is intended to provide a framework and.techniques to describe and analyze the evolution of dynamical.systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen’s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many.properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We s
出版日期Book 2011
關(guān)鍵詞37-XX; Hausdorff dimension; multifractal spectrum; random dynamical systems; thermodynamical formalism
版次1
doihttps://doi.org/10.1007/978-3-642-23650-1
isbn_softcover978-3-642-23649-5
isbn_ebook978-3-642-23650-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry影響因子(影響力)




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry被引頻次




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry被引頻次學(xué)科排名




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry年度引用




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry年度引用學(xué)科排名




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry讀者反饋




書(shū)目名稱Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:01 | 只看該作者
Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry
地板
發(fā)表于 2025-3-22 05:14:52 | 只看該作者
Conclusion – Towards New Organizations?ee [9] and Question 5.4 in [8]) of whether the Hausdorff dimension of almost all (most) naturally defined random Julia sets is strictly larger than 1. We also show that in this same setting the Hausdorff dimension of almost all Julia sets is strictly less than 2.
5#
發(fā)表于 2025-3-22 11:36:43 | 只看該作者
Classical Expanding Random Systems,ee [9] and Question 5.4 in [8]) of whether the Hausdorff dimension of almost all (most) naturally defined random Julia sets is strictly larger than 1. We also show that in this same setting the Hausdorff dimension of almost all Julia sets is strictly less than 2.
6#
發(fā)表于 2025-3-22 13:37:02 | 只看該作者
7#
發(fā)表于 2025-3-22 18:58:10 | 只看該作者
Barbara St?ttinger,Elfriede Penzxplain how this case can be reduced to random expanding maps by looking at an appropriate induced map. The picture is completed by providing and discussing a concrete map that is not expanding but expanding in the mean.
8#
發(fā)表于 2025-3-23 00:57:22 | 只看該作者
Expanding in the Mean,xplain how this case can be reduced to random expanding maps by looking at an appropriate induced map. The picture is completed by providing and discussing a concrete map that is not expanding but expanding in the mean.
9#
發(fā)表于 2025-3-23 03:32:27 | 只看該作者
Book 2011cribe and analyze the evolution of dynamical.systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable ex
10#
發(fā)表于 2025-3-23 08:16:44 | 只看該作者
The RPF-Theorem,thout any measurable structure on the space .. In particular, we do not address measurability issues of λ. and ... In order to obtain this measurability we will need and we will impose a natural measurable structure on the space .. This will be done in the next chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁阳市| 左贡县| 浠水县| 五指山市| 恭城| 梁山县| 建湖县| 滦南县| 崇州市| 瑞金市| 辽阳县| 科技| 碌曲县| 钟祥市| 常熟市| 宁乡县| 金秀| 临颍县| 郑州市| 施甸县| 乐陵市| 云龙县| 宝鸡市| 海门市| 汝城县| 若羌县| 盐山县| 贵德县| 旬邑县| 新乡市| 沙坪坝区| 保山市| 乐至县| 北安市| 平原县| 阿巴嘎旗| 安图县| 铁岭市| 扎囊县| 沾化县| 东丽区|