找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry; Volker Mayer,Mariusz Urbanski,Bartlomi

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 12:36:27 | 只看該作者
Expanding in the Mean, also hold for a class of random maps satisfying an allegedly weaker expanding condition . We start with a precise definition of this class. Then we explain how this case can be reduced to random expanding maps by looking at an appropriate induced map. The picture is completed by providing and discu
12#
發(fā)表于 2025-3-23 14:41:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:48:44 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:56 | 只看該作者
Volker Mayer,Mariusz Urbanski,Bartlomiej SkorulskiContains new results.Complete treatment of the topic.Originality of the topic.Includes supplementary material:
15#
發(fā)表于 2025-3-24 04:15:19 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/281664.jpg
16#
發(fā)表于 2025-3-24 09:45:28 | 只看該作者
The RPF-Theorem,thout any measurable structure on the space .. In particular, we do not address measurability issues of λ. and ... In order to obtain this measurability we will need and we will impose a natural measurable structure on the space .. This will be done in the next chapter.
17#
發(fā)表于 2025-3-24 11:07:52 | 只看該作者
Real Analyticity of Pressure,6.3). We putted this part at the end of the manuscript since, as already mentioned, it is of different nature. It is heavily based on ideas of Rugh [26] and uses the Hilbert metric on appropriately chosen cones.
18#
發(fā)表于 2025-3-24 15:44:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:14:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 玉山县| 夏邑县| 保山市| 隆化县| 工布江达县| 深水埗区| 天台县| 九江市| 双鸭山市| 扶沟县| 高阳县| 凌海市| 阜平县| 清苑县| 旬阳县| 永登县| 沙坪坝区| 县级市| 苍山县| 南宁市| 吉林市| 洞口县| 固镇县| 临漳县| 于都县| 岫岩| 松滋市| 八宿县| 政和县| 垫江县| 堆龙德庆县| 宁夏| 甘南县| 邻水| 加查县| 凤山市| 乌审旗| 安达市| 徐水县| 花莲县|