找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Disjunctive Programming; Egon Balas Book 2018 Springer Nature Switzerland AG 2018 optimization.integer programming.nonconvex programming.l

[復(fù)制鏈接]
樓主: Conjecture
21#
發(fā)表于 2025-3-25 05:27:28 | 只看該作者
Nonlinear Higher-Dimensional Representations,Apart from the extended formulations discussed in Chap. 5, a number of authors have proposed nonlinear higher dimensional constructions that provide tighter relaxations of conv...
22#
發(fā)表于 2025-3-25 10:15:43 | 只看該作者
The Correspondence Between Lift-and-Project Cuts and Simple Disjunctive Cuts,From the fact that the constraint set (6.3) of (CGLP). defines the convex hull of .?∩{.?:?..?∈{0, 1}}, and that conv.., the integer hull, can be derived by imposing the disjunctions ..?≤?0?∨?..?≥?1 sequentially, it follows that any valid cut for a mixed 0-1 program can be represented as a lift-and-project cut.
23#
發(fā)表于 2025-3-25 12:56:42 | 只看該作者
Solving (CGLP), on the LP Simplex Tableau,The major practical consequence of the correspondence established in Theorems 8.4A/8.4B is that the cut generating linear program (CGLP). need not be formulated and solved explicitly; instead, the procedure for solving it can be mimicked on the linear programming relaxation (LP) of the original mixed 0-1 problem.
24#
發(fā)表于 2025-3-25 16:43:47 | 只看該作者
Implementation and Testing of Variants,The discovery of the possibility of generating L&P cuts through pivoting in the LP tableau, without recourse to the higher-dimensional (CGLP), has opened the door to the introduction of this class of cuts into commercial optimizers
25#
發(fā)表于 2025-3-25 20:50:16 | 只看該作者
Cuts from General Disjunctions,In the early years of the twenty-first century the topic of cutting planes from split disjunctions seemed to have been exhausted, and attention turned to cuts from more general (non-split) disjunctions.
26#
發(fā)表于 2025-3-26 03:49:58 | 只看該作者
Disjunctive Cuts from the , -Polyhedral Representation,Given a disjunctive set in disjunctive normal form, i.e. as a union of polyhedra.
27#
發(fā)表于 2025-3-26 07:09:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:36 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:41 | 只看該作者
Egon BalasThe first and so far only book on this important subject.Written in a style accessible to all mathematically literate readers.The author is a famous expert in mathematical optimisation
30#
發(fā)表于 2025-3-26 19:35:12 | 只看該作者
http://image.papertrans.cn/e/image/281348.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 乌拉特中旗| 怀柔区| 新沂市| 桂东县| 广饶县| 额济纳旗| 永年县| 长岛县| 新宁县| 崇左市| 溧水县| 黄大仙区| 牡丹江市| 平利县| 寿阳县| 华坪县| 平乐县| 东乡族自治县| 横峰县| 江永县| 乡宁县| 黑龙江省| 岳普湖县| 饶阳县| 虹口区| 浦北县| 镇沅| 绵竹市| 宁晋县| 龙泉市| 特克斯县| 天柱县| 青海省| 平和县| 滦南县| 泸定县| 达日县| 雷波县| 三台县| 定襄县|