找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Disjunctive Programming; Egon Balas Book 2018 Springer Nature Switzerland AG 2018 optimization.integer programming.nonconvex programming.l

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 12:48:56 | 只看該作者
Saroja Ramanujan,Kapil Gadkar,Ananth KadambiThe major practical consequence of the correspondence established in Theorems 8.4A/8.4B is that the cut generating linear program (CGLP). need not be formulated and solved explicitly; instead, the procedure for solving it can be mimicked on the linear programming relaxation (LP) of the original mixed 0-1 problem.
12#
發(fā)表于 2025-3-23 14:07:57 | 只看該作者
https://doi.org/10.1007/978-3-319-44534-2The discovery of the possibility of generating L&P cuts through pivoting in the LP tableau, without recourse to the higher-dimensional (CGLP), has opened the door to the introduction of this class of cuts into commercial optimizers
13#
發(fā)表于 2025-3-23 18:22:45 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:38 | 只看該作者
https://doi.org/10.1007/978-1-4471-7351-9Given a disjunctive set in disjunctive normal form, i.e. as a union of polyhedra.
15#
發(fā)表于 2025-3-24 03:38:26 | 只看該作者
16#
發(fā)表于 2025-3-24 06:54:45 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:16 | 只看該作者
19#
發(fā)表于 2025-3-24 21:46:25 | 只看該作者
Disjunctive Programming and Extended Formulations,The fact that the convex hull of a disjunctive set has a compact representation in a higher dimensional space has spurred interest in finding convenient higher dimensional representations of various combinatorial objects.
20#
發(fā)表于 2025-3-25 00:08:14 | 只看該作者
Lift-and-Project Cuts for Mixed 0-1 Programs,Consider now the mixed 0-1 programming problem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
六盘水市| 绵阳市| 海兴县| 郑州市| 金寨县| 凌云县| 达州市| 湛江市| 子长县| 信丰县| 准格尔旗| 大埔县| 炎陵县| 洛宁县| 永川市| 高陵县| 常德市| 增城市| 隆化县| 大宁县| 景谷| 南靖县| 重庆市| 阳谷县| 海兴县| 进贤县| 乌兰察布市| 建瓯市| 武乡县| 大同市| 元江| 通州区| 武邑县| 镇远县| 临邑县| 加查县| 武城县| 肇东市| 塔河县| 册亨县| 多伦县|