找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復(fù)制鏈接]
樓主: Iodine
41#
發(fā)表于 2025-3-28 15:23:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:03:51 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recogn
43#
發(fā)表于 2025-3-29 01:55:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:49:42 | 只看該作者
Karembe F. Ahimbisibwe,Tiina Kontinenes with several representative methods of discriminative learning for biometric recognition. The ideas, algorithms, experimental evaluation, and underlying rationales are also provided for the better understanding of these methods. In this chapter, we will give a further discussion about the book an
45#
發(fā)表于 2025-3-29 08:48:30 | 只看該作者
https://doi.org/10.1007/978-981-19-4859-6esent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the triplet-SVM, are also introduced in this chapter.
46#
發(fā)表于 2025-3-29 11:45:52 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recognition.
47#
發(fā)表于 2025-3-29 18:09:41 | 只看該作者
David Zhang,Yong Xu,Wangmeng ZuoSummarizes the latest studies on discriminative learning methods and their applications to biometric recognition.Covers different biometric recognition technologies, including face recognition, palmpr
48#
發(fā)表于 2025-3-29 22:12:59 | 只看該作者
http://image.papertrans.cn/e/image/281228.jpg
49#
發(fā)表于 2025-3-30 03:01:48 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:20:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 尼勒克县| 长武县| 鄂州市| 凤凰县| 天门市| 宜兰市| 瑞昌市| 琼结县| 察雅县| 讷河市| 禄劝| 霍城县| 吉木乃县| 无为县| 霸州市| 莱西市| 乐清市| 宣武区| 名山县| 中牟县| 乌审旗| 莫力| 黑水县| 常熟市| 赞皇县| 同仁县| 洛阳市| 香港 | 蓬莱市| 云霄县| 苏尼特左旗| 海门市| 鱼台县| 黄浦区| 西乌珠穆沁旗| 保靖县| 湖北省| 黔西| 霍山县| 绍兴市|