找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復(fù)制鏈接]
樓主: Iodine
41#
發(fā)表于 2025-3-28 15:23:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:03:51 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recogn
43#
發(fā)表于 2025-3-29 01:55:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:49:42 | 只看該作者
Karembe F. Ahimbisibwe,Tiina Kontinenes with several representative methods of discriminative learning for biometric recognition. The ideas, algorithms, experimental evaluation, and underlying rationales are also provided for the better understanding of these methods. In this chapter, we will give a further discussion about the book an
45#
發(fā)表于 2025-3-29 08:48:30 | 只看該作者
https://doi.org/10.1007/978-981-19-4859-6esent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the triplet-SVM, are also introduced in this chapter.
46#
發(fā)表于 2025-3-29 11:45:52 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recognition.
47#
發(fā)表于 2025-3-29 18:09:41 | 只看該作者
David Zhang,Yong Xu,Wangmeng ZuoSummarizes the latest studies on discriminative learning methods and their applications to biometric recognition.Covers different biometric recognition technologies, including face recognition, palmpr
48#
發(fā)表于 2025-3-29 22:12:59 | 只看該作者
http://image.papertrans.cn/e/image/281228.jpg
49#
發(fā)表于 2025-3-30 03:01:48 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:20:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 安阳市| 八宿县| 革吉县| 长兴县| 马关县| 隆昌县| 诸城市| 商水县| 石景山区| 定陶县| 吉林市| 苏尼特左旗| 交口县| 兴安盟| 土默特左旗| 海城市| 澄城县| 新丰县| 长春市| 西吉县| 阳东县| 海城市| 菏泽市| 东兴市| 大名县| 封开县| 永平县| 衡阳县| 皋兰县| 广平县| 双鸭山市| 兰考县| 郧西县| 宜丰县| 咸丰县| 江安县| 孟州市| 马边| 丁青县| 揭东县|