找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復制鏈接]
樓主: Iodine
21#
發(fā)表于 2025-3-25 05:44:38 | 只看該作者
Discriminative Learning in Biometricsirst give an overview on the systems in terms of the input features and common applications. After that, we will provide a self-contained introduction to some discriminative learning tools that are commonly used in biometrics. A clear understanding of these techniques could be of essential importanc
22#
發(fā)表于 2025-3-25 11:26:06 | 只看該作者
Metric Learning with Biometric Applicationsesent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the trip
23#
發(fā)表于 2025-3-25 13:44:54 | 只看該作者
Sparse Representation-Based Classification for Biometric Recognitionthod has received much attention in recent years and is widely applied in many fields, such as image denoising, debluring, restoration, super-resolution, segmentation, classification, and visual tracking. In this chapter, we first summarize some frameworks of sparse representation, and then we give
24#
發(fā)表于 2025-3-25 16:13:58 | 只看該作者
Discriminative Features for Palmprint Authentications, which extract the coding features of palmprint images, are among the most promising palmprint authentication methods. In this chapter, we first give a brief review of palmprint authentication methods in Sect.?.. Section?. describes the conventional coding-based palmprint identification methods. I
25#
發(fā)表于 2025-3-25 23:59:58 | 只看該作者
Orientation Features and Distance Measure of Palmprint AuthenticationFor the orientation code-based methods, the orientation extraction and distance measure are two essential issues for palmprint verification. In this chapter, some efficient orientation extraction methods and a novel distance measure method are presented. The chapter is organized as follows. We first
26#
發(fā)表于 2025-3-26 03:07:37 | 只看該作者
27#
發(fā)表于 2025-3-26 04:41:11 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淄博市| 安多县| 宁波市| 漳州市| 迁安市| 桂阳县| 盐亭县| 栾城县| 襄汾县| 兴城市| 姜堰市| 苏尼特左旗| 巴塘县| 扎兰屯市| 延川县| 阿合奇县| 江阴市| 紫云| 深水埗区| 婺源县| 浦江县| 黎城县| 临桂县| 清水河县| 大邑县| 当涂县| 宜昌市| 昆山市| 利津县| 清镇市| 九龙城区| 沛县| 姜堰市| 松阳县| 桑植县| 嘉黎县| 尼勒克县| 丰台区| 新宾| 南皮县| 神木县|