找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete–Time Stochastic Control and Dynamic Potential Games; The Euler–Equation A David González-Sánchez,Onésimo Hernández-Lerma Book 2013

[復制鏈接]
樓主: 討論小組
21#
發(fā)表于 2025-3-25 05:39:14 | 只看該作者
L. S. Pereira,R. A. Feddes,B. LesaffreBoth direct and inverse problems in optimal control were considered in Chaps. 2 and 3, respectively. In Chap. 4 we dealt with dynamic games. Some of our main results are mentioned below in addition to discussing their relevance and possible generalizations.
22#
發(fā)表于 2025-3-25 08:15:26 | 只看該作者
23#
發(fā)表于 2025-3-25 15:16:59 | 只看該作者
Introduction and Summary,ts of OCPs and stochastic games by means of examples. We also provide an example of a potential game, namely, the . (SLG) of Dechert and O’Donnell [23]. Likewise, we present some related literature about solution methods for OCPs as well as some basic ideas about .. We close the chapter by describing the contents of the remaining chapters.
24#
發(fā)表于 2025-3-25 18:38:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:16 | 只看該作者
Book 2013re where?the Euler equation approach comes in because it is particularly well–suited to?solve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.
26#
發(fā)表于 2025-3-26 01:14:57 | 只看該作者
2191-8198 lve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.978-3-319-01058-8978-3-319-01059-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
27#
發(fā)表于 2025-3-26 05:41:22 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:11 | 只看該作者
29#
發(fā)表于 2025-3-26 14:07:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
屏边| 伽师县| 瓮安县| 米林县| 乌拉特中旗| 塘沽区| 陈巴尔虎旗| 内江市| 文山县| 舞阳县| 永安市| 永泰县| 新疆| 梓潼县| 大埔县| 桓台县| 五河县| 尼勒克县| 新巴尔虎右旗| 郯城县| 九台市| 青海省| 屯门区| 柘城县| 德兴市| 罗田县| 九江市| 湟源县| 大港区| 铜山县| 南岸区| 搜索| 许昌市| 司法| 榆社县| 金门县| 虞城县| 洪湖市| 九龙城区| 牙克石市| 石首市|