找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete–Time Stochastic Control and Dynamic Potential Games; The Euler–Equation A David González-Sánchez,Onésimo Hernández-Lerma Book 2013

[復制鏈接]
樓主: 討論小組
21#
發(fā)表于 2025-3-25 05:39:14 | 只看該作者
L. S. Pereira,R. A. Feddes,B. LesaffreBoth direct and inverse problems in optimal control were considered in Chaps. 2 and 3, respectively. In Chap. 4 we dealt with dynamic games. Some of our main results are mentioned below in addition to discussing their relevance and possible generalizations.
22#
發(fā)表于 2025-3-25 08:15:26 | 只看該作者
23#
發(fā)表于 2025-3-25 15:16:59 | 只看該作者
Introduction and Summary,ts of OCPs and stochastic games by means of examples. We also provide an example of a potential game, namely, the . (SLG) of Dechert and O’Donnell [23]. Likewise, we present some related literature about solution methods for OCPs as well as some basic ideas about .. We close the chapter by describing the contents of the remaining chapters.
24#
發(fā)表于 2025-3-25 18:38:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:16 | 只看該作者
Book 2013re where?the Euler equation approach comes in because it is particularly well–suited to?solve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.
26#
發(fā)表于 2025-3-26 01:14:57 | 只看該作者
2191-8198 lve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.978-3-319-01058-8978-3-319-01059-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
27#
發(fā)表于 2025-3-26 05:41:22 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:11 | 只看該作者
29#
發(fā)表于 2025-3-26 14:07:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
增城市| 望城县| 兴城市| 东乡县| 霸州市| 武宁县| 河南省| 客服| 花莲县| 若羌县| 慈利县| 石柱| 淮阳县| 扎鲁特旗| 仁寿县| 青岛市| 沁源县| 嵩明县| 宣武区| 宁晋县| 西峡县| 郴州市| 天等县| 灵石县| 濉溪县| 清新县| 普定县| 洛扎县| 兴业县| 宜宾市| 许昌县| 新竹市| 合水县| 图木舒克市| 偏关县| 区。| 贵南县| 时尚| 巴彦县| 卢湾区| 苏州市|