找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete–Time Stochastic Control and Dynamic Potential Games; The Euler–Equation A David González-Sánchez,Onésimo Hernández-Lerma Book 2013

[復(fù)制鏈接]
樓主: 討論小組
11#
發(fā)表于 2025-3-23 10:02:03 | 只看該作者
Irrigated Agriculture at the Crossroadsution to a system of stochastic difference equations to be the solution of a certain OCP. Our results extend to the stochastic case the work of Dechert [21]. In particular, we present a stochastic version of an important principle in welfare economics. The presentation of this chapter is based on Go
12#
發(fā)表于 2025-3-23 17:19:44 | 只看該作者
Irrigated Agriculture at the Crossroadsblems (OCPs), to find Nash equilibria in dynamic games. Second, to identify classes of dynamic potential games (DPGs), that is, games with Nash equilibria that can be found by solving a single OCP. In particular, the stochastic lake game (SLG) of Example 1.2 is included in one of these classes.
13#
發(fā)表于 2025-3-23 21:10:41 | 只看該作者
L. S. Pereira,R. A. Feddes,B. LesaffreBoth direct and inverse problems in optimal control were considered in Chaps. 2 and 3, respectively. In Chap. 4 we dealt with dynamic games. Some of our main results are mentioned below in addition to discussing their relevance and possible generalizations.
14#
發(fā)表于 2025-3-23 23:00:25 | 只看該作者
15#
發(fā)表于 2025-3-24 05:28:55 | 只看該作者
16#
發(fā)表于 2025-3-24 10:23:02 | 只看該作者
David González-Sánchez,Onésimo Hernández-LermaPresents a systematic, comprehensive, self-contained analysis of dynamic potential games, which appears for the first time in book form?.Reader-friendly, at a graduate student level.Substantial number
17#
發(fā)表于 2025-3-24 13:17:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:02:27 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:33 | 只看該作者
Irrigated Agriculture at the Crossroadsblems (OCPs), to find Nash equilibria in dynamic games. Second, to identify classes of dynamic potential games (DPGs), that is, games with Nash equilibria that can be found by solving a single OCP. In particular, the stochastic lake game (SLG) of Example 1.2 is included in one of these classes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤壁市| 丰顺县| 瑞金市| 山阴县| 南投县| 专栏| 水城县| 黑河市| 宁乡县| 潜江市| 南华县| 阳东县| 清水县| 高陵县| 黄冈市| 漳平市| 灌南县| 沁阳市| 慈溪市| 永泰县| 健康| 吴川市| 泗洪县| 五原县| 重庆市| 海南省| 寿阳县| 巢湖市| 漳州市| 河西区| 清镇市| 梨树县| 屏山县| 朝阳县| 北流市| 准格尔旗| 拉萨市| 乌兰察布市| 甘谷县| 贡嘎县| 安吉县|