找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time High Order Neural Control; Trained with Kalman Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Louki Book 2008 Springer-Verlag

[復(fù)制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 21:44:23 | 只看該作者
Discrete-Time Block Control,on of the dynamic system is named as the model. Basically there are two ways to obtain a model; it can be derived in a deductive manner using physics laws, or it can be inferred from a set of data collected during a practical experiment. The first method can be simple, but in many cases it is excess
32#
發(fā)表于 2025-3-27 04:50:57 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:10 | 只看該作者
Discrete-Time Block Control, chapter, a recurrent high order neural network is first used to identify the plant model, then based on this neural model, a discrete-time control law, which combines discrete-time block control and sliding modes techniques, is derived. The chapter also includes the respective stability analysis fo
35#
發(fā)表于 2025-3-27 16:17:41 | 只看該作者
Discrete-Time Neural Observers,e observer is based on a recurrent high order neural network (RHONN), which estimates the state vector of the unknown plant dynamics and it has a Luenberger structure. The learning algorithm for the RHONN is implemented using an extended Kaiman filter (EKF). The respective stability analysis, on the
36#
發(fā)表于 2025-3-27 19:25:32 | 只看該作者
Discrete-Time Output Trajectory Tracking,RHONO. This observer is based on a discrete-time recurrent high-order neural network (RHONN), which estimates the state of the unknown plant dynamics. The learning algorithm for the RHONN is based on an EKF. Once the neural network structure is determined, the backstepping and the block control tech
37#
發(fā)表于 2025-3-28 01:21:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:21 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 06:44:44 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 14:27:12 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 新干县| 镇远县| 刚察县| 兴仁县| 马龙县| 罗甸县| 康马县| 阿克陶县| 桐柏县| 桐梓县| 泾源县| 绥芬河市| 霞浦县| 临泉县| 雷州市| 淮安市| 耿马| 工布江达县| 陵川县| 汾阳市| 金门县| 繁峙县| 兴国县| 抚松县| 湘乡市| 泗阳县| 宣化县| 万山特区| 始兴县| 平安县| 灵石县| 金门县| 德江县| 高尔夫| 裕民县| 丰顺县| 彰化县| 汝城县| 九寨沟县| 广宁县|