找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time High Order Neural Control; Trained with Kalman Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Louki Book 2008 Springer-Verlag

[復(fù)制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 21:44:23 | 只看該作者
Discrete-Time Block Control,on of the dynamic system is named as the model. Basically there are two ways to obtain a model; it can be derived in a deductive manner using physics laws, or it can be inferred from a set of data collected during a practical experiment. The first method can be simple, but in many cases it is excess
32#
發(fā)表于 2025-3-27 04:50:57 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:10 | 只看該作者
Discrete-Time Block Control, chapter, a recurrent high order neural network is first used to identify the plant model, then based on this neural model, a discrete-time control law, which combines discrete-time block control and sliding modes techniques, is derived. The chapter also includes the respective stability analysis fo
35#
發(fā)表于 2025-3-27 16:17:41 | 只看該作者
Discrete-Time Neural Observers,e observer is based on a recurrent high order neural network (RHONN), which estimates the state vector of the unknown plant dynamics and it has a Luenberger structure. The learning algorithm for the RHONN is implemented using an extended Kaiman filter (EKF). The respective stability analysis, on the
36#
發(fā)表于 2025-3-27 19:25:32 | 只看該作者
Discrete-Time Output Trajectory Tracking,RHONO. This observer is based on a discrete-time recurrent high-order neural network (RHONN), which estimates the state of the unknown plant dynamics. The learning algorithm for the RHONN is based on an EKF. Once the neural network structure is determined, the backstepping and the block control tech
37#
發(fā)表于 2025-3-28 01:21:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:21 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 06:44:44 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 14:27:12 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 临潭县| 大丰市| 新郑市| 格尔木市| 新泰市| 新宁县| 容城县| 社会| 惠州市| 兰州市| 彭州市| 茂名市| 高陵县| 巢湖市| 周宁县| 隆回县| 济阳县| 宜城市| 揭阳市| 谷城县| 乐安县| 双鸭山市| 辰溪县| 辽宁省| 旌德县| 龙游县| 晋江市| 焉耆| 姚安县| 习水县| 中牟县| 于田县| 城步| 丰都县| 平湖市| 陇南市| 定远县| 白河县| 怀宁县| 孟津县|