找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Adaptive Iterative Learning Control; From Model-Based to Ronghu Chi,Na Lin,Ruikun Zhang Book 2022 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: ISH
21#
發(fā)表于 2025-3-25 05:15:54 | 只看該作者
22#
發(fā)表于 2025-3-25 08:48:10 | 只看該作者
Ronghu Chi,Na Lin,Ruikun ZhangFocuses on discrete-time adaptive iterative learning control (DAILC).Proposes systematic procedures for design and analysis of model-based DAILC for parametric systems.Proposes systematic procedures f
23#
發(fā)表于 2025-3-25 13:17:53 | 只看該作者
Intelligent Control and Learning Systemshttp://image.papertrans.cn/e/image/281192.jpg
24#
發(fā)表于 2025-3-25 19:34:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:12:43 | 只看該作者
Dimensions of Sustainability Appraisal,l performance by the use of both the operation errors and the prior control knowledge. Generally speaking, learning refers to an action of a system to adapt and change its behavior based on input/output observations.
26#
發(fā)表于 2025-3-26 02:23:39 | 只看該作者
Science for Sustainable Societiesion. For a multi-agent system, the presented distributed DAILC method in Chap. . is suitable since it uses the consensus error in the learning control algorithm. Further, for a practical plant that is too complex to obtain the exact mechanistic model, the data-driven DAILC methods presented in Chaps. . and . are the suitable choices.
27#
發(fā)表于 2025-3-26 05:26:21 | 只看該作者
2662-5458 AILC for parametric systems.Proposes systematic procedures fThis book belongs to the subject of control and systems theory. The discrete-time adaptive iterative learning control (DAILC) is discussed as a cutting-edge of ILC and can address random initial states, iteration-varying targets, and other
28#
發(fā)表于 2025-3-26 12:29:25 | 只看該作者
Science for Sustainable Societiese been widely studied by introducing parametric adaptation law in the learning process. The DAILC method not only overcomes the iteration-varying reference trajectories but also removes the requirement of identical initial states to achieve a perfect tracking.
29#
發(fā)表于 2025-3-26 14:20:47 | 只看該作者
Introduction,l performance by the use of both the operation errors and the prior control knowledge. Generally speaking, learning refers to an action of a system to adapt and change its behavior based on input/output observations.
30#
發(fā)表于 2025-3-26 16:55:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 淮阳县| 延吉市| 拜泉县| 孝义市| 谢通门县| 澜沧| 大城县| 镇宁| 玉门市| 托里县| 巫山县| 西宁市| 隆尧县| 喀什市| 县级市| 佛坪县| 揭阳市| 彰化县| 梨树县| 昌邑市| 开江县| 威远县| 阿拉善左旗| 福贡县| 沾化县| 靖西县| 安国市| 锡林郭勒盟| 施甸县| 林西县| 株洲市| 祁连县| 龙陵县| 余庆县| 古浪县| 阿克陶县| 大厂| 楚雄市| 凯里市| 宜黄县|