找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Adaptive Iterative Learning Control; From Model-Based to Ronghu Chi,Na Lin,Ruikun Zhang Book 2022 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: ISH
11#
發(fā)表于 2025-3-23 09:49:04 | 只看該作者
Muchaiteyi Togo,Heila Lotz-SisitkaIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
12#
發(fā)表于 2025-3-23 16:52:05 | 只看該作者
https://doi.org/10.1007/978-3-319-02375-5Chapter . shows some initial results of DAILC methods for nonlinear systems under linear growth conditions where the KTL-like technology is adopted for convergence analysis.
13#
發(fā)表于 2025-3-23 21:42:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:18 | 只看該作者
Mohammadsajjad Sheikhmiri,Tomayess IssaDistributed control that aims for consensus tasks of multi-agent systems has progressed rapidly with a wide range of applications
15#
發(fā)表于 2025-3-24 03:02:52 | 只看該作者
Discrete-Time Adaptive ILC for?Nonlinear Parametric SystemsIn control practice, many control tasks end in a finite interval and repeat. Examples are the track-following control of a hard disk drive, and the temperature or pressure control in a batch reactor. In such a circumstance, iterative learning control (ILC) methods, evolved over the past nearly four decades
16#
發(fā)表于 2025-3-24 08:32:26 | 只看該作者
Data-Weighted Discrete-Time Adaptive ILCIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
17#
發(fā)表于 2025-3-24 11:24:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:25 | 只看該作者
Neural Network-Based Discrete-Time Adaptive ILCAs we all know that neural network (NN) has the property of universal approximation to nonlinear functions, it is therefore considered as a general tool for modeling a nonlinear function and has been applied to the adaptive control systems.
19#
發(fā)表于 2025-3-24 22:00:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:25 | 只看該作者
https://doi.org/10.1007/978-981-19-0464-6Iterative Learning Control; Adaptive Iterative Learning Control; Terminal Iterative Learning Control; D
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄县| 曲周县| 普宁市| 龙川县| 封开县| 城市| 文山县| 来凤县| 牟定县| 宜君县| 眉山市| 聂荣县| 博乐市| 巩留县| 云浮市| 尚义县| 大名县| 鄯善县| 东至县| 海南省| 南康市| 博湖县| 长岛县| 读书| 易门县| 宁国市| 英德市| 革吉县| 宁武县| 新龙县| 井陉县| 京山县| 翼城县| 高安市| 儋州市| 西昌市| 嘉禾县| 大关县| 雷山县| 秦安县| 芷江|