找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Adaptive Iterative Learning Control; From Model-Based to Ronghu Chi,Na Lin,Ruikun Zhang Book 2022 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: ISH
11#
發(fā)表于 2025-3-23 09:49:04 | 只看該作者
Muchaiteyi Togo,Heila Lotz-SisitkaIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
12#
發(fā)表于 2025-3-23 16:52:05 | 只看該作者
https://doi.org/10.1007/978-3-319-02375-5Chapter . shows some initial results of DAILC methods for nonlinear systems under linear growth conditions where the KTL-like technology is adopted for convergence analysis.
13#
發(fā)表于 2025-3-23 21:42:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:18 | 只看該作者
Mohammadsajjad Sheikhmiri,Tomayess IssaDistributed control that aims for consensus tasks of multi-agent systems has progressed rapidly with a wide range of applications
15#
發(fā)表于 2025-3-24 03:02:52 | 只看該作者
Discrete-Time Adaptive ILC for?Nonlinear Parametric SystemsIn control practice, many control tasks end in a finite interval and repeat. Examples are the track-following control of a hard disk drive, and the temperature or pressure control in a batch reactor. In such a circumstance, iterative learning control (ILC) methods, evolved over the past nearly four decades
16#
發(fā)表于 2025-3-24 08:32:26 | 只看該作者
Data-Weighted Discrete-Time Adaptive ILCIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
17#
發(fā)表于 2025-3-24 11:24:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:25 | 只看該作者
Neural Network-Based Discrete-Time Adaptive ILCAs we all know that neural network (NN) has the property of universal approximation to nonlinear functions, it is therefore considered as a general tool for modeling a nonlinear function and has been applied to the adaptive control systems.
19#
發(fā)表于 2025-3-24 22:00:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:25 | 只看該作者
https://doi.org/10.1007/978-981-19-0464-6Iterative Learning Control; Adaptive Iterative Learning Control; Terminal Iterative Learning Control; D
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄山市| 赣榆县| 南昌市| 肇东市| 浠水县| 洛南县| 临江市| 克拉玛依市| 和静县| 滨海县| 隆昌县| 和田市| 金坛市| 贵溪市| 河池市| 桓仁| 金平| 财经| 霍州市| 嵊泗县| 文登市| 梧州市| 潜江市| 古丈县| 南康市| 灵寿县| 莱芜市| 专栏| 寿宁县| 龙游县| 永善县| 通州市| 德格县| 磐安县| 嘉禾县| 杭州市| 城固县| 连江县| 彝良县| 延边| 曲沃县|