找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
31#
發(fā)表于 2025-3-26 21:56:32 | 只看該作者
Non-neoplastic Intestinal DiseaseFor a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
32#
發(fā)表于 2025-3-27 03:17:23 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
33#
發(fā)表于 2025-3-27 06:54:49 | 只看該作者
Non-neoplastic Intestinal DiseaseAn arrangement of . lines chosen at random from . . has a vertex set whose convex hull has constant (expected) size.
34#
發(fā)表于 2025-3-27 13:26:32 | 只看該作者
Universal Measuring Devices with Rectangular Base,We consider a device with rectangular base having no gradations. We show that the number of directly measurable amounts of liquid using the device with its vertices as markers is always 13, independent of its shape. Then we show how the device can measure any integral amount of liquid between 1 and 858 liters.
35#
發(fā)表于 2025-3-27 14:53:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:20:01 | 只看該作者
Partitioning a Planar Point Set into Empty Convex Polygons,For a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
37#
發(fā)表于 2025-3-28 00:29:16 | 只看該作者
Relaxed Scheduling in Dynamic Skin Triangulation,We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
38#
發(fā)表于 2025-3-28 05:27:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:11:02 | 只看該作者
https://doi.org/10.1007/b11261Maxima; Triangulation; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; complexity;
40#
發(fā)表于 2025-3-28 14:17:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁晋县| 吉林市| 万全县| 固安县| 新平| 南澳县| 沙洋县| 峨眉山市| 皋兰县| 浙江省| 沁水县| 东阳市| 临西县| 万年县| 桓仁| 彭水| 沙洋县| 夏邑县| 阳城县| 微山县| 手游| 格尔木市| 惠水县| 锡林浩特市| 饶阳县| 宜兴市| 汕尾市| 濉溪县| 曲水县| 湛江市| 五台县| 海原县| 湘潭县| 丰镇市| 大安市| 江都市| 五家渠市| 丰都县| 大关县| 通州区| 定结县|