找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry, Combinatorics and Graph Theory; 7th China-Japan Conf Jin Akiyama,William Y. C. Chen,Qinglin Yu Conference proceedings 20

[復(fù)制鏈接]
樓主: Croching
41#
發(fā)表于 2025-3-28 18:16:45 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:59:51 | 只看該作者
Two Classes of Simple MCD Graphs,ph .′ in .. with |.(.′)|?>?|.(.)|. A planar graph . is called a . (.) if .. formed by the following method is a path: corresponding to each interior face . of . (. is a plane graph of .) there is a vertex .. of ..; two vertices .. and .. are adjacent in .. if and only if the intersection of the boun
44#
發(fā)表于 2025-3-29 05:16:48 | 只看該作者
Infinite Series of Generalized Gosper Space Filling Curves,the computer search and some geometrical insight, we conjecture that the degree . satisfies .?=?6.?+?1. We investigate the existence of infinite series of generalized Gosper curves. We show how to generate these series and introduce two new methods, the ‘decomposition method’ and the ‘modified layer method’.
45#
發(fā)表于 2025-3-29 07:52:00 | 只看該作者
Hamiltonicity of Complements of Total Graphs,djacent or incident in .. In this paper, we show that the complement of total graph .(.) of a simple graph . is hamiltonian if and only if . is not isomorphic to any graph in {. .| .?≥?1}?∪?{. .?+?. .| .?≥?1}?∪?{. .?+?.| .?≥?2}?∪?{. .?+?2. ., . .?+?,. ., . .?+?2. ., . .}.
46#
發(fā)表于 2025-3-29 14:18:05 | 只看該作者
A Note on the Integrity of Middle Graphs,and .(.???.) denote the the subset of . and the order of the largest component of .???., respectively. In this paper, we determine the integrity and some other parameters of middle graphs of some classes of graphs.
47#
發(fā)表于 2025-3-29 17:21:46 | 只看該作者
48#
發(fā)表于 2025-3-29 23:21:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:31:30 | 只看該作者
Supply Chain Management with SAP APO?In this paper some new results on edge coloring of graphs are introduced. This paper deals mainly with edge cover coloring, .-edge cover coloring, (., .)-coloring and equitable edge coloring. Some new problems and conjectures are presented.
50#
發(fā)表于 2025-3-30 07:14:10 | 只看該作者
Contractible Edges in a ,-Connected Graph,An edge of a .-connected graph is said to be .-contractible if the contraction of the edge results in a .-connected graph. Some results concerning .-contractible edges in a .-connected graph are presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云浮市| 平安县| 洛阳市| 榆树市| 凉城县| 临泉县| 陈巴尔虎旗| 仁怀市| 吉木萨尔县| 改则县| 西畴县| 江陵县| 沂水县| 鄂托克旗| 乐清市| 南阳市| 萍乡市| 望城县| 北票市| 延津县| 沈阳市| 水富县| 金华市| 屏东县| 上林县| 广灵县| 延长县| 临沧市| 台东县| 宝山区| 商洛市| 长泰县| 贵南县| 莎车县| 全椒县| 仁怀市| 德庆县| 广河县| 佛教| 农安县| 海伦市|