找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry, Combinatorics and Graph Theory; 7th China-Japan Conf Jin Akiyama,William Y. C. Chen,Qinglin Yu Conference proceedings 20

[復(fù)制鏈接]
查看: 42747|回復(fù): 69
樓主
發(fā)表于 2025-3-21 16:40:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Discrete Geometry, Combinatorics and Graph Theory
副標(biāo)題7th China-Japan Conf
編輯Jin Akiyama,William Y. C. Chen,Qinglin Yu
視頻videohttp://file.papertrans.cn/282/281130/281130.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Discrete Geometry, Combinatorics and Graph Theory; 7th China-Japan Conf Jin Akiyama,William Y. C. Chen,Qinglin Yu Conference proceedings 20
出版日期Conference proceedings 2007
關(guān)鍵詞Graph; Graph theory; Sim; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; computati
版次1
doihttps://doi.org/10.1007/978-3-540-70666-3
isbn_softcover978-3-540-70665-6
isbn_ebook978-3-540-70666-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Discrete Geometry, Combinatorics and Graph Theory影響因子(影響力)




書目名稱Discrete Geometry, Combinatorics and Graph Theory影響因子(影響力)學(xué)科排名




書目名稱Discrete Geometry, Combinatorics and Graph Theory網(wǎng)絡(luò)公開度




書目名稱Discrete Geometry, Combinatorics and Graph Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Discrete Geometry, Combinatorics and Graph Theory被引頻次




書目名稱Discrete Geometry, Combinatorics and Graph Theory被引頻次學(xué)科排名




書目名稱Discrete Geometry, Combinatorics and Graph Theory年度引用




書目名稱Discrete Geometry, Combinatorics and Graph Theory年度引用學(xué)科排名




書目名稱Discrete Geometry, Combinatorics and Graph Theory讀者反饋




書目名稱Discrete Geometry, Combinatorics and Graph Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:26 | 只看該作者
Supply Chain Management with SAP APO?), where .?=?. .?+?. .?+?. ., . .?≥?0, . .?≥?0, . .?≥?0 and . .?+?. .?+?. .?≥?1. We show that the plane can be subdivided into . disjoint convex polygons . such that every . . contains . red points and . blue points, every . . contains . red points and .?+?1 blue points and every . . contains .?+?1 red points and .?+?1 blue points.
板凳
發(fā)表于 2025-3-22 04:19:56 | 只看該作者
SCM Processes and SAP APO Modulesficient conditions respectively in the situations that the density function achieves its minimum value on a set with positive Lebesgue measure or at finitely many points. We propose also an economical scheme for the coverage of sensor networks with empirical distributions.
地板
發(fā)表于 2025-3-22 07:02:38 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:17 | 只看該作者
Peter Schentler,Antje Krey,Martin Tschandlnteger satisfying ..?≤?.?≤?... We also find all corresponding integers .. and ... In addition, we prove that if . is the class of all connected cubic planar graphs of order 2. with decycling number . and ., then there exists a sequence of switchings .., .., ..., .. such that for every .?=?1, 2, ..., .???1, . and ..
6#
發(fā)表于 2025-3-22 15:03:33 | 只看該作者
Kurt Sandkuhl,Alexander Smirnov,Bengt Henoch to these weaker conditions mentioned above. In this paper, we study the relations among these different conditions. In particular, we prove that every triangularly connected claw-free graph without isolated vertices is also quasilocally connected claw-free.
7#
發(fā)表于 2025-3-22 19:21:19 | 只看該作者
8#
發(fā)表于 2025-3-23 01:18:03 | 只看該作者
On the Choice Numbers of Some Complete Multipartite Graphs,mplete (.?+?1)-partite graph . .. Using these, we determine the choice numbers for some complete multipartite graphs . .. As a byproduct, we classify (i) completely those complete tripartite graphs . . and (ii) almost completely those complete bipartite graphs . . (for .?≤?6) according to their choice numbers.
9#
發(fā)表于 2025-3-23 04:44:13 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:27 | 只看該作者
A Neighborhood Condition for Graphs to Have [,, ,]-Factors III,r any subgraph . of . with . edges and .(.???.(.))?≥?., . has an [., .]-factor . such that .(.)?∩?.(.)?=??. This result is best possible in some sense and it is an extension of the result of Matsuda (Discrete Mathematics . (2000) 289–292).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 新干县| 淅川县| 秦皇岛市| 基隆市| 富民县| 舒城县| 高安市| 苍山县| 响水县| 苏尼特右旗| 赤峰市| 锡林浩特市| 全椒县| 买车| 简阳市| 高州市| 灵寿县| 桑植县| 勃利县| 临泽县| 黄梅县| 班戈县| 武冈市| 永昌县| 东乌珠穆沁旗| 巴里| 武宣县| 铜陵市| 尉氏县| 临高县| 怀集县| 凭祥市| 宁乡县| 武隆县| 从化市| 平陆县| 黎城县| 瑞丽市| 谢通门县| 准格尔旗|