找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Symmetry; Dedicated to Károly Marston D. E. Conder,Antoine Deza,Asia Ivi? Weiss Conference proceedings 2018 Springer

[復(fù)制鏈接]
樓主: informed
41#
發(fā)表于 2025-3-28 16:25:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:43 | 只看該作者
Hexagonal Extensions of Toroidal Maps and Hypermaps,examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal extensions of the tetrahedron.
43#
發(fā)表于 2025-3-29 01:05:34 | 只看該作者
44#
發(fā)表于 2025-3-29 05:48:30 | 只看該作者
Sphere-of-Influence Graphs in Normed Spaces,eralization of results of Füredi and Loeb (Proc Am Math Soc 121(4):1063–1073, 1994 [.]) and Guibas et al. (Sphere-of-influence graphs in higher dimensions, Intuitive geometry [Szeged, 1991], 1994, pp. 131–137 [.]).
45#
發(fā)表于 2025-3-29 09:57:25 | 只看該作者
https://doi.org/10.1007/978-3-319-78434-2discrete geometry; symmetry groups; polytopes; combinatorics; linear optimization
46#
發(fā)表于 2025-3-29 14:41:45 | 只看該作者
47#
發(fā)表于 2025-3-29 18:50:00 | 只看該作者
48#
發(fā)表于 2025-3-29 23:04:27 | 只看該作者
49#
發(fā)表于 2025-3-30 00:47:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:33:20 | 只看該作者
Super Sinne - Warum wir 32 davon habenThis paper describes ways that certain regular honeycombs of non-finite type in .-dimensional hyperbolic space . for . and 5 can be inscribed in others, in particular showing that some can be inscribed properly in copies of themselves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临汾市| 泉州市| 聊城市| 江达县| 铜梁县| 辽阳县| 随州市| 麟游县| 宁强县| 游戏| 克什克腾旗| 毕节市| 涟水县| 孟州市| 章丘市| 安岳县| 隆昌县| 丰台区| 志丹县| 大庆市| 远安县| 灵川县| 临海市| 奉新县| 正宁县| 靖远县| 鄂州市| 永靖县| 漳浦县| 江油市| 额尔古纳市| 那曲县| 东方市| 南昌县| 家居| 湛江市| 洪湖市| 禄丰县| 徐州市| 天等县| 股票|